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We present an exact treatment of electromagnetic wave propagation in a crystal medium with varying 
dielectric constant via quantum mechanical approach. Quantum mechanical equation involving 
dielectric constant was defined for incoming linearly polarized monochromatic electromagnetic wave 
derived from a re-normalized relativistic Langrangian equation, 0 perturbH H H= + . Considering that the 

spatial waveform of the field inside the field medium is not sinusoidal, we applied the Fourier transform 
to obtain the dispersion relation and as such, the group velocity vg of the waveform using the mean 
energy flux and energy density. The frequency of the forward propagating field and the reflected field 
that depicts the interaction of the field with the crystal, which on other hand explains the frequency 
range at which the crystal exhibit anti-reflection behavior, was also determined. 
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INTRODUCTION 
 
The problem of wave propagation in a crystal medium 
with varying dielectric constant has received great 
attention since the early stage of electromagnetism. The 
first analytical results were obtained by Rayleigh for 
waves whose velocity inside the medium depends 
linearly on the coordinate (Rayleigh, 1880). Later, the 
linear profile for ε(ω) (Hartree, 1931), z being the 
direction of propagation of the electromagnetic wave as 
well as an exponential and in more general, the Epstein 
profile (Epstein, 1952) were used for the analysis of radio 
wave propagation in the ionosphere. The study of 
electromagnetic wave propagating in a spatially 
inhomogeneous medium is complicated (Budden, 1966; 
Wait, 1970; Born and Wolf, 1970). At a Later year after 
the exact analytic solutions for optical fields in 
homogeneous media were found only for a few specific 
geometries, such as the cholesteric liquid crystal 
(Peterson, 1983; Oldano et al., 1983). A number of schemes 
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have been proposed for the computation of the optical 
effect of layered inhomogeneous media. Such schemes 
include the Abelé 2 × 2 matrix method (Abele, 1950), the 
Jones 2 × 2 propagation matrix (Jones, 1941; Azzam and 
Bashara, 1972) and 2 × 2 propagation matrix for 
electromagnetic waves propagating obliquely in layered 
inhomogeneous uniaxial media (Ong, 1993).  

This present work is aimed at studying the behaviour of 
electromagnetic wave propagating through a crystal with 
varying dielectric constant using a quantum mechanical 
approach. 
 
 
THEORETICAL FRAMEWORK  
 
Formulation of quantum mechanical equation 
involving dielectric constant 
 
We begin by defining the dielectric constant ( )ε ω  via the 

relation 
 
 4E Eε λρ= +   (1) 



 
 
 
 

Where    z ze N eρ ρ ρ= =   (2)    
 
and N is the density of the molecular constituent of the 
thin film while p  is the part of the dipole moment. If we 
consider an incoming plane monochromatic linearly 
polarization electromagnetic wave not influenced by 
molecular polarization, we can assume that 
 
 ( )0 sin zE A E t eω=

                           (3) 
      
with a related potential ( ),z tφ satisfying 

  
 ( ),E grad z tφ=

                          (4)  
 
with a regularized field. The theoretical Hamiltonian, H 
derived in the usual way from a renormalized relativistic 
Langrangian (Walthout, 1998; Wilson et al., 1994) enable 
us to write that: 
 

 0 perturbH H H= +
                          (5)  

   
where H0 is the usual free Hamiltonian and perturbH  is the 

perturbed term of the Hamiltonian represented  by the 
field propagating  through the crystal. 

The Schrodinger equation for molecular electrons of 
the crystal ions is of the form 
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       (6)  
 
Neglecting exp 0( / )i E t− h  with a common factor, and  

i te ω
 and i te ω− which are linearly independent coming out 

during the solution of Equation 6, we have 
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                             (7b) 
      
Since 0E ω+ h and 0E ω− h  are not eigenvalue of ˆ

oH , 
otherwise ω  would be termed absorption frequency, then 

we assumed ( )0,1, 2jE j = L to be the eigenvalue of ˆ
oH  

and ( )j zΨ , the related eigefunction. With this, ω+ is 

expanded to be 
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which enabled us to write that 
 
 

0
ˆ

j j jH EΨ = Ψ
                  (9) 

    
Using Equation 7a and b in Equation 8, we obtain that: 
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Therefore we can write the wave function as 
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and this means that the dipole moment in the direction of 
the field is  
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Since it is the electric field component of light wave that 
we are considering, the atoms or the molecules are said 
to be partly polarized with  
 
 j j oω = Ε − Εh

                                                         (14)       
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To obtain the dielectric constant, we use 
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Hence, we obtain from Equation 17 that the dielectric 
constant is:  
 ( ) 2

2 2
1

4
1 j

je j

f
c

m

πε ω
ω ω

∞

=

Ν= +
=∑

                                    (18) 



7418          Int. J. Phys. Sci. 
 
 
 
REFLECTIVE BEHAVIOUR OF A WAVE 
PROPAGATING IN A CRYSTAL WITH SLOWLY 
VARYING REFRACTIVE INDEX  
 
Variation of refractive index in a medium cause a 
variation of frequency of propagating electromagnetic 
wave or field with the field propagating through a crystal 
of thickness z′ and then if the interface with vacuum is z 
= 0 and extends to z z′= . If the field arrives at the crystal 
surface at t = 0 and that  
 
 0  0

( ) 2
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for t

f t
for t
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=    ≥                          (19) 
     
 
Using the standard Fourier transform theory, the 
dispersion relation is obtained to be:  
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which can be written as; 
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c
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Hence, the spatial waveform of the field inside the film 
medium is not sinusoidal and is formed due to 
interference of forward and backward waves. As a result, 
the group velocities gv  of these waveforms have to be 

determined by means of energy flux (poynting vector) P 
and energy density W (Ginzburg, 1967). We recall that: 
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which can be solved (Petite and Shvartsburg, 2005). The 
spatial structure of the field inside the film is already said 
to be formed by the interference of forward wave directed 
towards the plane of the film z = 0, and backward one, 
reflected from the plane z z′= . Let us further recall that 
the spatial component of the electric field xE and the 

magnetic field yH propagating along the z–direction is 

given by  
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One can present in a simple term Equations 23 and 24 
as: 
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Where Q is a dimensional parameter describing the 
reflectivity at the boundary z z′= . If the reflective 
coefficient of the film R is introduced, we can write the 
continuity at the boundary of the plane as z = 0 
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with parameters C, q, N, η and 2p defined as shown 
below. 
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where b1 and b2 are the free parameter of the model and; 

1a and 2a  are the characteristic spatial scales of 
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RESULTS AND DISCUSSION  
 
Comparing the result of this work  with  the  one  obtained  



 
 
 
 
using classical approach, when 1χ <  where χ is a 

damping term which is neglected as obtained by 
Fitzpatrick (2007), we find out that the dielectric constant 
is a frequency dependant function. From Equation 18, it 
is observed that at low frequencies below the smallest 
frequency jω , all the terms is the sum which is positive 

and even the refractive index n(ω) which is related to the 

dielectric constant as ( )ε ω , is greater than unity. It will 

be observed that as ω increases to high values such that 
it is greater than ωj, negative sum occurs and hence 

( ) n ω is less than unity.   
This depicts the fact that at high frequencies, 

electromagnetic wave propagated through ionic crystal 
medium with phase velocity is greater than the velocity of 
light in vacuum. This implies that jω ω≈ . 

One also observes that the expression relating ω  in 
Equation 10 and 11 depicts the frequency of the forward 
propagating field with the reflected field interaction 
propagating in the crystal.  This of course affects the 
amplitude of the reflected wave at the interface z z′= and 
thus changes the structure of the poynting vector and the 
energy density, and consequently the group velocity, Vg. 
Another interesting phenomenon is the dispersion 
introduced by such crystal which is frequency dependent 
as shown in Equation 21. Here, one observes that, if the 
refractive index is considered to have positive imaginary 
component that might lead to attenuation of the wave as 
it propagates through the crystal, the reflection co-
efficient of crystal is of low intensity over a large 
frequency range. The antireflection property of the crystal 
material   is observed in the frequency range to vary only 
with the length of the scales 1a and 2a .     
 
 
CONCLUSION 
 
In this work, we have presented a number of properties, 
which can be studied, with the help of exact solution of 
electromagnetic wave propagations applied to crystal 
media and presenting spatial variation of its dielectric 
constant. Though quantum mechanical approach was 
used, they contain enough parameters to describe the 
dielectric constant of a crystal and how the refractive 
index relates to the dielectric constant of the crystal. 
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This formalism allowed the understanding of how the 

dielectric constant variation influences the various 
properties of the crystals such as reflection coefficient, 
anti- reflectance and refractive index. It was shown that 
when used close to their cut-off frequency, in the 
propagation mode, such crystal might have some 
exceptional negative dispersion relation. With this 
knowledge, it is possible to design a system with specific 
dispersion or reflection properties in any frequency range.    
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