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Clustering analysis is an effective method to discover and identify tumor classes. So, this paper 
proposes a Fuzzy C-Means clustering (FCM) algorithm based on Non-negative matrix factorization 
(NMF). Firstly, gene expression profiling (GEP) is simply processed through mean and variance of gene 
expression, which can then be mapped into a low dimensional space by NMF method. Finally, for 
discovering and identifying cancer classes, the FCM algorithm is adopted to cluster the GEP. 
Experimental results show that the NMF reduction dimension method has the capability to resist noise. 
Compared with Principal component analysis (PCA) method, the NMF reduction dimension method also 
shows certain advantage. 
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INTRODUCTION 
 
The DNA microarray technique has given rise to a 
revolutionary influence to traditional cancer treatment 
methods (Rui et al., 2008), which can detect 
simultaneously tens of thousands of gene expression 
level in different samples. Now, studies based on the 
GEP have attracted more and more attention. However, 
analyzing GEP still faces many challenges; a typical one 
is “fewer samples and higher dimension”. So, how to 
effectively reduce dimension of the GEP is becoming a 
research hot spot. Many researchers have focused on 
reduction dimension methods (Tusher et al., 2001; Wang 
et al., 2006; Yeung et al., 2009), most of which are 
supervised reduction dimension methods, while a little 
attention was paid to unsupervised reduction dimension 
methods (Tang and Zhang, 2003). In fact, unsupervised 
reduction dimension methods are necessary because a 
lot of unknown class data are in existence in the real 
world.  

Currently, most of unsupervised reduction dimension 
methods are based on statistical knowledge or clustering 
algorithm to find a subset of gene (information gene) (He 
et  al., 2003;  Zhu et  al., 2005). Talavera (2000) proposed  
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dependency-based feature selection method. The 
method was based on the correlation between informa-
tion genes under the assumption that the other genes 
does not exist. Pena et al. (2001) constructed a related 
measurement standard and computed correlation 
threshold to achieve dimension reduction. Regarding this, 
traditional methods ignore the fact that the GEP is often 
“highly connected” (Jiang et al., 2003). Su et al. (2003) 
utilized Rank gene, a program which contains a series of 
common genetic ranking criterion, to extract feature 
genes in 2003. Ding (2003) presented a two-way ordering 
method to select feature gene in the same year under the 
assumption that some genes may correspond to a new 
kind of unknown expression class. The algorithm 
proposed by Watson (2006), which used co-Xpress as a 
means of identifying groups of genes, can overcome the 
shortcoming of traditional methods that may miss groups 
of genes from differential co-expression patterns under 
different subsets of experimental conditions. 
Experimental results showed that the methods were 
effective. 

The non-negative matrix factorization (NMF) method 
(Lee and Seung, 1999, 2001), a recent method for 
compressing data scale, is a linear, non-negative 
approximate data representation, and should be noted 
that  negative  often  does  not has meaning in reality and  



 

 
 
 
 
the non-negative is more close to reality (Paatero and 
Tapper, 1994). This paper proposes the NMF dimension 
reduction method to map the samples with high 
dimension into low dimensional space. Meanwhile, the 
class information of all the samples is effectively 
preserved. The Fuzzy C-Means clustering (FCM) 
algorithm (Dembele and Kastner, 2003) is adopted to 
cluster all the samples, meanwhile, the Principal 
component analysis (PCA) (He and He, 2007) is used to 
compare with the proposed algorithm. 
 
 
NON-NEGATIVE MATRIX FACTORIZATION (NMF) METHOD  
 
The NMF method (Lee and Seung, 1999), a recent method for 
compressing data scale, is a linear, non-negative approximate data 

representation. Suppose that  ij M N
s


S is a non-negative 

matrix subject to 0ijs  , 1,2, ,i M  , 1,2, ,j N  , the NMF 

method means that the matrix S  is approximately factorized into 

two sub non-negative factors W  with size M r  and H  with 

size r N . Usually,  min ,r N M , so that W  and H are 

smaller than the original matrix S . Then, an approximate 

factorization S WH  is obtained. The approximate degree is 

quantified by computing Kullback-Leibler Divergence function 
(Cover and Thomas, 1991): 
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This is lower bounded by zero, and clearly vanishes if and only if 

S WH . In addition, the divergence ( , )D S WH  is non 

increasing under the following update rules (Lee and Seung, 2001): 
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Fuzzy C-Means clustering 
 
The FCM algorithm (Dembele and Kastner, 2003) allows a sample 
belonging to one or more classes. Assume that there are 

M samples which were assigned into C  classes (
1 2, , , CP P P ), 

then iju is defined to describe the correlation degree between each 

sample jx and class iP . So, the correlation matrix U  can be 

obtained as follows: 
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Where  0 1iju  , 1,2, ,i C  , 1,2, ,j M  . For a given 

sample
jx , 

iju indicates a strong association to class 
iP  if 

iju is 

close to 1 and a lower association if 
iju is close to 0. Meanwhile, 

the 
iju  must meet the following constraints: 
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The optimal clustering results can be obtained by minimizing the 
cost function of Equation 7, which includes the correlation degree 
between samples and classes, and distance information of 
samples and class centroids. 
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Where 
iv indicates the centroid of class 

iP , (0 )m   is a 

weight index, 
ijd is the Euclidean norm. through the introduction 

of Lagrange multiplier, the constraint condition of Equation 7 
optimization problem can be transform into an optimization 
problem with no constraint conditions. 
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Where ( 1,2, , )j j M   is a Lagrange multiplier. For Equation 

9, we can solve the partial derivative of the objective function and 

get 
iv  and iju . Finally, Equation 6 can reach an ideal value 

through continuously updating 
iv and iju . 
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Clustering validity 
 
The  cluster  valid  index  plays  a very important role to clustering  



 

5894          Int. J. Phys. Sci. 
 
 
 
analysis. In this paper, Xie-Beni index (Xie and Beni, 1991) that is 
proposed in accordance to the FCM algorithm is applied to assess 
the capability of clustering.  
 

Xie-Beni index: 
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Here, [0, )h   , 
min ( )i jd v v is the shortest Euclidean distance 

between the classes’ centroids. The 
xbV  includes not only the 

information of the correlation degree but also that of samples, which 

can be seen that the smaller the 
xbV , the better the clustering result. 

 
 
RESULTS 
 
Experimental procedure 
 

The GEP can be expressed in a matrix  = ij M N
g


G , M and 

N indicates the number of samples and the number of 

genes. 
ijg shows the expression level of gene 

jg in 

sample
ix . Generally, N M , which is the so-called 

“dimension disaster”. Reducing dimension of the GEP is 
necessary, while the information of samples class can be 
remained as much as possible. 
 
 
Data preprocessing 
 
Previous studies have shown that sample classes can be 
discriminated through only a small subset of genes 
whose expression levels strongly correlated with the 
class distinction (Golub et al., 1999). This means that the 
GEP often contains a huge amount of noise. Then a 
simple method is implemented to preprocess the GEP. 
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Here, jAVE , jMax  and jMin  represent mean, maximum 

and minimum of the ith gene in M samples, respectively. 

These genes with smaller jGen  will be eliminated so that 

the subsequent processing complexity can be reduced. 

 
 
Extract the basis factors 

 
The data matrix G of size M L  will be obtained through 

preprocessing the GEP, then we perform NMF on G and 

get an approximate expression according to the updated 
rules of Equations 2 and 3. 
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Here, the ith sample
1 1 2 2i i i ir rw w w   Y H H H , 

1,2 ,i M  . ( 1,2, , )j j rH   represents a basis vector 

(that is, basis factor). That is, each sample is 

approximated by a linear combination of 
jH , weighted by 

the components of W. Generally, the number of the basis 
factors is relatively few, so all the samples can be 
mapped into a low dimensional space. Then W is a 

compressed version of the data matrix G in the space. 

 
 
Fuzzy C-Mean clustering 
 
Clustering analysis based on the GEP can be transform 

into ideal with the row vectors of ( )ij M Nw W . In order to 

obtain the optimal U  and clusters centroids 

1 2( , , , )CV v v v  , the following steps are performed: 

 
Step 1: Randomly initialize matrix U from 0 to 1 

according to Equations 5 and 6, and subject to [0 1]iju  ; 

 
Step 2: Calculate centroids of clusters by using Equation 

10, and obtain
iv and ijd  1,2, , ; 1,2, ,i C j M   ; 

 
Step 3: Compute the cost function according to Equation 
7, Stopping criteria is given by predefined value or 

1k kJ J T  . kJ is the value of the cost function in the 

kth iteration, T  is a given value. Otherwise, go to Step 4; 
 
Step 4: Update U  with Equation 11, go to Step 2. 

 
 
Simulation experiment 
 
Simulation data is divided into three classes of curves, 
which includes three lines, three sine curves and three 
parabolas. As shown in Figure 1, 21 discrete points are 
selected according to x  as varied in some intervals from 

0 to 2 , then simulation data can be organized as a 

matrix 
9 21V . V  is factorized by the NMF method into two-

dimensional and three-dimensional spaces when the 
number of basis factors is 2r   and 3; the effect of 
reduction dimension by NMF is shown in Figures 2 and 3. 
Here, blue, red and green points represent sine curves, 
lines and parabolas, respectively. Compared with the 
Figure 1, the different classes of curves became easier to 
recognize.  

Curve cross phenomenon can be observed in Figure 1. 
Curve classes cannot be an accurate judgment if we only  



 

 
 
 
 

 
      
    Figure 1. Simulation dataset. 

 
 
 

 
 

Figure 2. Three classes curves in the two-dimensional space. 
 
 
 

use the points of intersection; these points cannot very 
well reflects curve feature and may lead to a bad 
clustering result. Nevertheless, in Figures 2 and 3, the 
influence of the points is effectively eliminated by NMF. 
What is more? the points from the same curve have 
strong correlation, that is, a lot of noise exists in those 
points. Analogously, the noise has been reduced 
observably in Figures 2 and 3. 
 
 
Cancer data experiments 
 
The results of simulation experiment show that NMF can 
effectively reduce dimension and reserve category 
information. Then the NMF reduction dimension method 
is used in the next two typical datasets-leukemia dataset 
and colon dataset (Table 1). Colon dataset URL:  
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Figure 3. Three classes curves in the three-dimensional space. 

 
 

 
http://linus.nci.nih.gov/~brb/DataArchive_New.html, 
leukemia dataset URL: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. 

 
 
Leukemia dataset 
 

Firstly, the 
xbV  is used to analyze the clustering validity. 

Let 1,3,5,7r  , leukemia samples are clustered into 2, 3, 

4, 5 and 6 classes. Considering the initialization of NMF 
and U  is random, the instability of the clustering result is 

existent. The solution is obtained by testing repeatedly to 

record the optimal xbV  index.  

In Figure 4, xbV shows the clustering validity of the 

leukemia dataset. In the case of 1,3,5,7r  , we find the 

minimum value of the 
xbV  in 3C   and the sub-minimum 

value of the 
xbV  in 2C  from four sub-figures, which 

illustrates that the best number of clusters is 3 and the 
second good number of clusters is 2. This result is in 
accordance with the practical situation of 3 classes (that 
is, AML, ALL_B and ALL_T) and 2 classes (that is, AML 
and ALL). The fact confirms that the NMF reduction 
dimension method does not change the class information 
of sample. 

In follow-up experiments, the dimension reduction effect 
of the NMF method will be in the spot light. Compared 
with the PCA method (He and He, 2007), the results are 
given as follows: 
 
When 3r   and 2C   or 3, there is only one AML 

sample and is misclassified into ALL class by the NMF 
method, which illustrates that this method has a good 
performance in keeping classification information. Table 2 
shows  that  this  method  is  better  than the PCA method. 
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Table 1. Two cancer datasets. 
 

Dataset Samples number Class 1 Class 2 Genes number 

Leukemia 38 27 (19 ALL_B and 8 ALL_T) 11 (AML) 5000 

Colon 62 22 (Normal) 40 (Cancer) 2000 
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Figure 4. The V × b index (r = 1, 3, 5, 7). 

 
 
 

Table 2. The contrast experiment results of Leukemia dataset. 
 

Class number(C) Method Clustering accuracy (%) 

2 NMF 97.37 

 PCA 89.47 

   

3 NMF 97.37 

 PCA 78.95 

 
 
 
The reduction dimension effect of the NMF method is 
vividly and directly observed in Figure 5 when 2r  . 38 
samples were divided into two classes in Figure 5a, while 
the clustering result through the FCM algorithm is shown 
in Figure 5b when 2C  .  

The clustering result of 38 samples is shown in three-
dimensional space in Figure 6. The distinction between 
classes is mainly embodied in each dimension 
when 3C  , as shown in Figure 6b. The value of AML 

samples in the first dimension is significantly greater than 

that  of  ALL_T  and  ALL_B  samples,  and  the  value  of 
ALL_T and ALL_B samples are the biggest in the second 
and third dimension, respectively. Here, only one error is 
that one ALL_B sample is assigned into class ALL_T. 
 
 
Colon dataset 
 
The comparison results about the NMF and PCA 
methods  are  shown  in  Table  3.  It is clear that the NMF   
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Figure 5. The G obtained after preprocessing Leukemia dataset, then factorized by NMF when 2r  and 

gain 38 2W  . Each row of 38 2W  corresponds to a sample. The effect of before clustering and after clustering are (a) 
and (b), respectively. 

 
 
 

     

(a) (b) 

 
 

Figure 6. The G  obtained after preprocessing Leukemia dataset, then factorized by NMF when 2r   and 

gain 38 3W  . Each row of 38 3W  corresponds to a sample. The effect of before clustering and after clustering are (a) 
and (b), respectively. 

 
 
 
method is superior to the PCA method. If about 250 
genes were chosen in the pretreatment stage, the correct 
rate of the clustering result has reached 88.71%. We find 
that the correct rate drops when the numbers of gene in 
the pretreatment stage are more than 300 or less than 
200 on the basis of many times experiments. The 
possible reason is that the noise and un-information 
genes lowered the NMF effect when more than 300. In 
the case of less than 200, the effect is also deteriorated 
due  to  the  loss  of information genes. Thus, the number 

of information genes can be estimated. 
Analogously, to observe more vividly the effect of 

reduction dimension by the NMF method, colon samples 
are clustered in Figures 7 and 8. 

Colon data is clustered into 2 classes, and clustering 
effect is observed directly from Figure 8b, and about 7 
samples are misclassification samples, the results show 
that the class information of  the samples is effectively 

reserved after the NMF method factorizes the G .  

The  results  of  the  simulation   dataset  and   the   real 



 

5898          Int. J. Phys. Sci. 
 
 
 

Table 3. The contrast experiment results of colon dataset. 
 

Class number(C) Method Clustering accuracy (%) 

2 NMF 88.71 

 PCA 80.65 

 
 
 

        
 

(a) (b) 

 
 

Figure 7. The G  with 50 genes obtained after preprocessing Leukemia dataset in (a), then factorized 

by NMF when 3r   and gain 62 3W  . Each row of 62 3W  corresponds to a sample. The compression effect 

of  G  is shown in (b). 

 
 
 

      

 

 

(b) 

(a) 
(b) 

 
 

Figure 8. The G  obtained after preprocessing Leukemia dataset, then factorized by NMF when 3r   and 

gain 62 3W  . Each row of 62 3W  corresponds to a sample. The effect of before clustering and after clustering 
are (a) and (b), respectively. 

 
 
 

datasets verify that the NMF method is a feasible and 
valid reducing dimension. 
 
 
DISCUSSION 

 
Many  methods  reduce  the  GEP dimension by selecting 

information genes, whose shortcoming is the lack of 
considering the correlation between genes. However, the 
methods, like PCA and Independent component analysis 
(ICA), have some restrictive conditions on datasets. For 
instance, the datasets must be linearly separable or with 
Gaussian distribution. In generally, these conditions are 
not necessarily reasonable.  



 

 
 
 
 

In this paper, the datasets need to meet the negative, 
which is consistent with the reality, so the NMF method 
has certain rationality. But the clustering result appeared 
unstable due to the initialization of the NMF method that 
is random. So how to initialize is significant in a follow-up 
research. Meanwhile, the clustering accuracy can be 
further enhanced through combining with other 
classifiers  (as K Nearest Neighbor classifier, Support 
Vector Machine and so on). All the experiments were 
completed with Maltab software (version 7.0). 
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