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The simple local optical potential adopted in analyzing successfully C12 elastic scattering data in 

the delta resonance region has been emphasized here. This is based on obtaining the same nature for 

the potential by extracting potential points from available O16  phase shifts at 114, 163, 240 and 

340 MeV using inverse scattering theory within the framework of Klein-Gordon equation.  Luckily, and 
as expected, the obtained analytical potential form has also been used successfully in accounting for 
the experimental angular distributions at another nearby four energies, namely 170, 220, 230, and 270 
MeV. At energies considered herein, the calculated reaction cross sections are in good agreement with 

available experimental ones, and are in spectral match with C12 experimental ones. The nature of 

the real part of the potential showed a change from attractive to repulsive at about 200 MeV, and the 
imaginary part is dominated by the surface absorption term. In treating the pion-nucleus scattering 
problem, we found that there is no privacy for a doubly closed-shell self-conjugate target nucleus 

compared to another nucleus, at least NZ   light bound nucleus, and for incident pion energies in the 

domain of the delta resonance region. Instead, it seems that the description of the scattering process is 
mainly attributed to the geometrical structure of the target nucleus. This is a first time corollary, and 
more investigations are needed.  
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INTRODUCTION 
 
The pion plays an important role in nuclear physics due 
to its unique physical properties (Stroot, 1973) as 1) it is a 
generator (carrier) of the nuclear force 2) it is an 
important part in the nuclear many-body problem 3) it has 
a zero spin 4) it has a one isospin triplet 5) it has negative 

and positive charges that allow for neutron and proton 
characterization, and uncover Coulomb effects. 
Exceptionally, pion facilities have been established and 
developed to produce and accelerate these pions (Lee 
and Redwine, 2002). In the literature  (Shehadeh,  2008), 
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pions are categorized into three well-known energy 
regions according to their incident kinetic energies,

T . 

These energy regions are the low energy region

 MeVT 1000  
, resonance energy region  MeVT 400100  

 

and the high energy region  MeVT 400
.  In each energy 

region, the pion has its own mean free path, , which is 

smaller, on the order of or larger than the inter-nucleon 

distance, d , in the nucleus. This is an indicator whether 

the pion can penetrate into the nucleus or be absorbed at 
the nuclear surface.  

In the resonance energy region, also known as the 
(3/2, 3/2) resonance energy which is abbreviated as (3,3) 
resonance energy or the delta resonance (Δ-resonance) 

region, d which prevents the pion from penetrating 

into the nucleus and only faces a complete absorption at 
the nuclear surface.  

As the number of pion-nucleon scatterings is limited by 

 , different theories, theoretical models and theoretical 

approaches have been proposed (Kisslinger, 1955; Fӓldt, 
1972; Eriscson and Weise, 1988) to describe 
successfully the available pion-nucleus data, mainly the 
angular distributions, at all angles and energies covering 
all energy regions.  In the low energy region, several 
previous pion-nucleus potentials have been proposed 
and used to explain the available wealth of pion-nucleus 
scatterings data as explained in Shehadeh (2013a) and 
references therein. Unfortunately the success was either 
marginal or incomplete. This formed a strong motivation 
for us to search for new pion-nucleus potentials that 
serve well in providing a better explanation for measured 
angular distributions. Indeed the low energy 

CaOC 401612 ,,  
elastic scattering data have been nicely 

explained  by our potentials (Shehadeh, 2013a, 2014c; 
Shehadeh and Al-Shawaf, 2015) which are obtained from 
available phase shifts using inverse scattering theory and 
adopting the full Klein-Gordon equation.  

In the Δ-resonance region, also several theories, 
theoretical models and approximations as, but not 
restricted to, the multiple scattering theory (Eisenberg and 

Koltun, 1980) including both Watson's multiple scattering 
theory and Glauber's multiple scattering theory (Shalaby 
et al., 2007), the  -hole formalism (Hirata et al., 1979; 
Kisslinger and Wang, 1976), eikonal approximation with 
the interacting boson model (Zhang, 1993), strong 
absorption model (Begum et al., 2003; Rahman and Sen 
Gupta, 1991), the single folding  -cluster model (El-

AzabFarid and Ebrahim 2015), equivalent local Kisslinger 
optical potential with analytical distorted wave 
approximation (Safari, 2005), a density dependent optical 
pion-nuclear potential (Gmitro et al., 1987), local and 
equivalent local optical potentials (Satchler, 1992; 
Johnson and Satchler, 1996; Khallaf and Ebrahim, 2000; 

Ebrahim and Khallaf, 2005; Khallaf and Ebrahim,  2005; 

Akhter et al., 2001; Hong and Kim, 1999) have been used 
with varying degrees of success. The deficiencies of these  

 
 
 
 
theories are alluded to 1) fail in reproducing backward 
elastic scattering data for both pion charges 2) difficulty in 
calculation due to non-localities 3) true quantitative 
description of the scattering process 4) disagreement 
between theory and experiment especially around 

maximum and minimum 5) unphysical meaning for some 
used parameters and 6) uncertainties in the data. 

It is of special importance to point out that among all 
proposed pion-nucleus potentials, Satchler's potential 
(Satchler, 1992) deserves special remembrance and 
commemoration. He introduced a simple local 
phenomenological optical potential of Woods-Saxon 
shape, for both real and imaginary parts, to describe the 
scattering data of charged pions from few nuclei in the 
(3,3) resonance region. Satchler's treatment was based, 
and for the first time, on reducing Klein-Gordon equation 
into a relativistic Schrödinger equation by performing 
some redefined kinematical quantities. Although he 

neglected the squared potential term,   ErV 22 , in his 

treatment and, in essence, has used the truncated Klein-
Gordon equation and not the complete one, he achieved 
better results than any other study done before. As such, 
he recorded a distinguished great success with a 
witnessed novelty in his treatment. Accordingly, Satchler's 
treatment forms a strong inducement for analyzing 

several  nucleus data over the last two decades. 

Recently, and in analyzing pion-
40

Ca elastic scattering 
data at 163.3 MeV, Shehadeh et al. (2003), have noticed 
that when Satchler's potential is implemented in the 
complete Klein-Gordon equation, that is, considering 

  ErV 22  term, the fit is no more good especially at 

backward angles. This was a suitable reasoning to 
search for an alternative potential which could 
successfully explain the experimental backward-angle 
elastic scattering angular distributions, as well as 
forward-angle ones, for several pion-nucleus systems. 
Shehadeh (1995) has obtained the nature of pion-

40
Ca 

optical potential from the available phase shifts using 
inverse scattering theory within the framework of the 
complete Klein-Gordon equation. The analytical form of 
this potential has also been adopted in several 
subsequent studies (Shehadeh et al., 2011; Shehadeh, 
2013b, 2014a, b), and has showed a remarkable success 
in accounting for all analysed pion-nucleus elastic 
scattering angular distributions data. As such, the same 

analytical form is adopted here in analyzing O16  

elastic scattering angular distributions data at eight 
energies ranging from 114 to 340 MeV. 

 
 
THEORY 

 

Nature of pion O16  potential  

 
The extracted potential points, obtained from available phase shifts 
using inverse scattering theory within the framework of the 



 
 
 
 
complete Klein-Gordon equation, have obligated the shape of the 

nuclear pion O16 potential as outlined in inverse scattering 

method. The obtained potential is the same as the one used in the 

pion C12 case (Shehadeh, 2014a), and has the following 

analytical form:  
 

     (1) 
 

It is clear that  rVN  consists of four potential terms as the sum of 

two real and two imaginary terms. The two real terms are of Woods-
Saxon and squared Woods-Saxon forms, while the imaginary ones 
are of Woods-Saxon and surface Woods-Saxon forms. This 
analytical nuclear potential, which is Satchler's potential (Satchler, 
1992) consummated by the squared Woods-Saxon real term, has 
been used before in analysing successfully pion-nucleus elastic 
scattering angular distributions data over all angular ranges and 
wide range of energies (Shehadeh, 1995, 2013b, 2014a, b; 

Shehadeh et al., 2011). The Coulomb potential,  rVC , is 

substituted for by a constant of 2.4 MeV for  , respectively, 

according to Stricker's prescription(Stricker, 1979): 

 

                                                                             (2) 
 

Where 8TZ , 44.12 e MeV.fm and 74.2cR fm are the 

atomic number of the target nucleus, the square of the electronic 
charge in nuclear units and Coulomb radius, respectively. 

As usual, the potential in (1) is inserted in the radial part of Klein-
Gordon equation given by: 
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where  rRn  is the r times the radial part of the wave function for 

a spherical symmetric external potential. In Equations (4) and (5), 

E , m , c  and  rV  are the actual pion energy, effective pion 

mass, velocity of electro-magnetic wave in vacuum and complex 

pion-nucleus potential,      rVrVrV CN  , respectively. 

The actual pion energy and its effective mass are calculated 
following Satchler's assertion (Satchler, 1992), and will not be 
repeated here. To calculate the differential and reaction cross 

sections, dd and r , respectively, defined as : 
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one needs to know the complex nuclear phase shifts  . In 

Equations (6) and (7),  cf  is the point Coulomb scattering 

amplitude,   is the point Coulomb phase shift,  cosP  is the 

Legendre polynomial, and 


i

eS
2

   is the S-matrix. 

For each partial wave  , the phase shift   is calculated by 

matching the logarithmic derivatives of the inner and outer solutions 

at the cutoff radius Rr  where the nuclear potential is turned off. 

The inner solution, for Rr  , is obtained by solving (3) 

numerically and having the wave function  r  satisfies the 

boundary condition, 
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 The outer solution, for Rr  , is the well-known one expressed as: 
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where F  and G  are the relativistic regular and irregular 

Coulomb wave functions (Shehadeh, 2015a). 

 
 
Inverse scattering method 
 
Although the inverse scattering theory has been explained well in 
our previous work (Shehadeh, 2009), it will be summarized here for 
its fundamentality and as being a backbone in this investigation. 
The method relies on transforming the second order differential 
equation given in Equation (3) and also expressed as: 
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with 
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 into a difference equation of the following form : 
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In this equation, the quantities  nA ,  nB  and  nC are 

defined as: 
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)1/()1()( nnCn                                             (15)  

                                                                                                                                                                  

where  is obtained by dividing the range, R , of  rU  in N  

equal parts so that  NR and the point  nr with n  being 

an integer.  

The most important of these quantities is  nA  as it contains 

nU  which is the value of U  at the n -th point and, as such, one 

can obtain the inverted potential points. Since the nuclear part of 

the potential is negligible for Rr  , the logarithmic derivative for 

a given  ,  NZ ,  is approximated by replacing the first 

derivative by central difference for Nn  , that is,  NR , and 

has the following form: 
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It is clear that the function  NZ  can be evaluated from (12) for

Nn  , 
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Where
222 kAN  for 0NU . So at the nuclear 

surface, that is, Rr  , one gets : 
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The partial wave   takes the values ranging from zero to the 

largest partial wave number plus one in integer number steps, that 

is, L ..., ,2 ,1 ,0 with 1 LN  where L  being the 

largest partial wave number. From Equation (15) there is always an 

n that makes   0nNnC  . Considering first the point 

directly inside the surface, that is, for 1 Nn , one has: 
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Continuing this inward iteration, all the points jNA   for 

1 ..., ,3 ,2  Nj can be calculated by using the relation:

 































)(/)()()(

)(
.

)()(

)(
....

)()(

)(

)(

1
)(

111

1

22

2

11

1

jNjNjNjN

jN

jNjN

jN

jjNjjN

jjN

jjN

jjN
BA

C

BA

C

BA

C

B
A

















       (20) 

 

Knowing sAn ' , Equations (13) and (5) can be used to calculate 

nU and  rVn  
at all n  corresponding points. 

 
 

RESULTS AND DISCUSSION 
 

The inverted potential points, obtained from available 
phase shifts using inverse scattering theory within the 
framework of the full Klein-Gordon equation, were used 

as a guide to determine the nature of the pion O16  

potential. These phase shifts are available only at four 
pion's incident kinetic energies (Fröhlich et al., 1981), 
namely 114, 163, 240 and 340 MeV (lab.) in the energy 
region under consideration. Also large angle data exist at 
the lowest three energies (Albanese et al., 1980). For 
each of these four energies the parameters of the 
adopted potential in Equation (1) have been changed to 
keep the analytical form of the potential, both real and 
imaginary, in a reasonably nice match with the inverted 
potential points and, simultaneously, to provide the 
possible best fit to the angular distributions. Luckily the 
measured elastic differential cross sections are available 
for the scatterings of both positive and negative pions 
from oxygen-16 nucleus,  and  the  calculated  differential 

cross sections are in good agreement with the measured 
ones. The potential parameters that fulfil these two 

constraints consist of six fixed ones: fma 474.00  , , 

fma 333.01  , MeVW 302  , fmR 53.22  , 

fma 766.02  , fmR 65.11  except at the highest two 

energies 270 and 340 MeV where only R1 is changed to 
2.75 and 2.65 fm, respectively; and the other six 
parameters were subject to change as listed in Table 1. It 
is worthwhile to mention that the modified versions of the 
inverse scattering code for non-identical particles and the 
hard core code (Alam and Malik, 2008) were used in this 
investigation. 

Benefitting from these potential parameters, which form 
the nature of the potential at each of the four energies 
114, 163, 240 and 340 MeV, and their remarkable 
success in explaining the measured angular distributions 
(Albanese et al., 1980; Bason et al., 1981), the potential 
parameters at the other four nearby energies, namely 
170, 220, 230, and 270 MeV, were also determined. In 
fact, the theoretical calculations obtained by these 
parameters, the fixed ones and changed ones indicated 
in Table 1, are found to be in good agreement with the 
available data (Bason et al., 1981;  Blecher  et  al.,  1974;
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Table 1. The changed six potential parameters  MeVinVo  ,  fminRo  ,  MeVinV  1 ,  MeVinW  3 ,  fminR  3  and 

 fmina  3 used in Equation (1) for incident charged pions on 
16

O target at energies  MeVinT   , in lab. system, noted in column 

one. The average values of our calculated reaction cross sections  theorr  in millibarns, noticed in column ten, are compared 

with the extracted ones r  (Walker, 1973). 

 

T
 

Pions oV
 

oR
 

1V
 3W

 3R
 

3a
 

 theorr
 

 theorr
 

 1973 Walker,r
 

114 
  -25 1.50 -130 -145.6 3.00 0.450 568.6 573.3 555 

 
  -25 1.50 -130 -115.6 3.20 0.450 578.0   

163 
  -15 3.05 -130 -370.6 2.05 0.570 580.5   

 
  -33 3.05 -120 -370.6 2.05 0.570 600.2 590.4 585 

170 
  -10 3.95 -140 -260.6 2.10 0.600 576.1   

 


 
      584.4 580.2 575 

220.0 
  +45 2.50 -80 -175.6 2.60 0.420 461.1   

 
        465.8 463.4 485 

230 
  +80 2.50 -25 -175.6 2.60 0.420 450.0   

 
        454.1 452.0 460 

240 
  +65 2.75 +20 -130.6 2.60 0.420 416.0   

 
  +65 2.45 -60 -115.6 2.60 0.480 418.8 417.4 425 

270 
  +50 2.90 +45 -115.6 2.57 0.420 381.0   

 
        384.2 382.6 Not Available 

340 
  +20 3.65 +60 -115.6 2.27 0.420 362.7 364.1 Not Available 

 
        365.5   

 
 
 

Koch and Sternheim, 1972) for the scattering of either 
negative or positive pions from 

16
O-nucleus. All data 

available in laboratory system (Blecher et al., 1974; Koch 
and Sternheim, 1972) were converted to the centre of 
mass system. In general, and at all eight energies 
considered herein, a good agreement between data and 
theoretical predictions was obtained.  

To hold a comparison between O16   and C12  

potential parameters, one may notice that the three 

diffuseness parameters ( oa , 1a , 2a ) have the same 

values in both cases. Also the ratio between 1R -values in 

O16  and C12  equals 1.1 which is the same 

ratio for 2R , and also for     1.11216
313131

1

31

2 AA  

which means that 1R  and 2R follow the 
31A rule. It is 

worth noticing that six potential parameters, namely oa , 

1a , 2a , 1R , 2R and 2W
 
were kept fixed. In addition, the 

behaviour of the two changed parameters oV  and 1V is 

similar for both O16  and C12 cases, that  is,  

the depth of the real Woods-Saxon term, oV , and the 

height of the real squared Woods-Saxon term, 1V , 

change with energy in such a way that result in a total 
real part that turns from attractive to repulsive at about 
200 MeV. So the interplay between the two real terms 
decides on the general shape and nature of the real part. 
A similar picture for the change of the real part from 
attractive to repulsive has also been observed in nucleon-
nucleon scattering at about 200 MeV. As the energy of 
the incident nucleon increases, the distance between 
interacting nucleons decreases and a nucleon-nucleon 
repulsive potential arises due to color forces between 
quarks. With the same analogy one can say that as the 
incident pion's kinetic energy increases the pion-nucleon 
interaction distance gets smaller but to a certain distance 
where the color neutrality of the pion may be violated. 
Therefore a repulsive force kicks in and the residual force 
is changed to repulsive. 

On the other hand the depth of the imaginary part is 
most pronounced at 163 MeV which is also reflected in 
the highest reaction cross section. This creates no 
wonder as the surface  imaginary  potential  term  plays a 
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Figure 1. The analytical forms of the real (solid lines) and imaginary (dashed lines) parts of the potentials, used in analyzing 
elastic scattering data, are shown along with the inverted real (solid circles) and imaginary (empty triangles) potential points at 
114, 163, 240 and 340 MeV incident pion kinetic energies. 

 
 
 
dominant role in the pion's absorption at the nuclear 

surface for incident energies in the  -resonance region. 
Nevertheless, the contribution of the volume imaginary 
part in the absorption is small. With all this, one may 
notice the congruence between the potential parameters 

for both O16 and C12  elastic scatterings. 

As pointed out, the inverse scattering theory has also 
been used here in predicting the pion-oxygen potentials 
at 114, 163, 240 and 340 MeV, where phase shift 
analyses are available. These four energies are vivid 
samples of below, atop and above resonance. The 
obtained inverted potential points have been used as a 
guide in predicting the nature of the pion-nucleus 
potential at each of the corresponding pion's incident 

kinetic energy, T . The parameters in Equation 1 are 

parameterized to keep the analytical forms, real and 
imaginary, of the potential very close to the inverted 
potential points and, simultaneously, provide the possible 
best  fit  to   the   measured   angular   distributions.   The 

capability and success of these potentials in fitting the 
elastic differential and integral cross sections data 
(Albanese et al., 1980; Bason et al., 1981) consolidate 
the exceptional role played by the inverse scattering 
theory in investigating pion-nucleus scatterings. Such a 
role is also clear in determining alpha-alpha (Shehadeh, 
2015b), alpha-nucleus (Alam and Malik, 1990), and 
nucleus-nucleus (Alam and Malik, 1991) potentials. For 

all energies considered herein, the calculated O16
elastic differential cross sections compared to the 
experimental ones are shown in Figures 2 and 4. The 
analytical forms of the potentials, both real and imaginary 
parts, are displaced in Figures 1 and 3 which clearly 
show the attractive nature of the imaginary part and the 

gradual change in the real part, with T , from attractive 

to repulsive at about 200 MeV. At the four bombarding 
energies 114, 163, 240 and 340 MeV where phase shifts 
are available, Figure 1 also shows the inverted potential 
points drawn as solid circles and empty triangles  for  real 
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Figure 2. The calculated elastic differential cross sections, drawn as solid and dashed lines for 
positive and negative pions, respectively, compared to the experimental data (Albanese et al., 
1980; Bason et al., 1981), represented by solid circles and empty triangles, as a function of 

center of mass angle 
..mc . 

 
 
 

 
 

Figure 3. The analytical forms of the real (solid lines) and imaginary (dashed lines) parts of 

the potentials used in analyzing the O16 elastic scattering data at T 170, 220 and 230 

MeV, and in analyzing O16 elastic scattering data at T 270 MeV. 
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Figure 4. The calculated elastic differential cross sections (dashed lines) for negative pions and 
(solid line) for positive pions, are compared with the experimental values, represented by empty 
triangles (Blecher et al., 1974) and solid circles (Koch and Sternheim, 1972), as a function of center 

of mass angle 
..mc . 

 
 
 

and imaginary parts of the potential, respectively, and 
these points are in a good match with the analytical 
forms. The reasonable number of phase shifts and the 
proper choice of the cutoff radius (Alam, 1991) contribute 
positively in obtaining more reliable inverted potential 
points, and then correct potential parameters. 

The harmony in the behaviours of the potentials, real 
and imaginary parts, and the calculated reaction cross 

sections for both O16 and C12  nuclear systems is 

very obvious. In fact our calculated reaction cross 

sections and 3W -values are nicely correlated as both of 

them represent absorption to nonelastic channels. Also it 
is worth to notice that the calculated reaction cross 

sections for O16  are, as expected, greater than the 

ones for C12 at all energies under consideration. This 

is clearly displaced in Figure 5. Nevertheless, our 

calculated reaction cross sections satisfy the 
32A  rule in 

the resonance energy region (Walker, 1973), especially 
at the resonance-peak. This may indicate that a doubly 
closed-shell self-conjugate target nucleus did not differ 
significantly from a non-doubly and/or self-conjugate one, 
especially for light nuclei as oxygen-16 and carbon-12 
with equal numbers of protons Z and neutrons N, i.e. Z = 
N, for each, in determining the gross behaviour of the 
scattering process. Surely this needs more investigation. 
In addition, one may notice  that  our  calculated  reaction 

cross sections are in good agreement with experimental 
and reported theoretical values (El-Azab Farid and 
Ebrahim, 2015; Albanese et al., 1980; Walker, 1973; 
Clough et al., 1974), with the consideration of a 
downward shift in the peak of the reaction cross section 
by about 15 MeV (Phatak et al., 1973). 

It is also interesting to notice that the second minimum, 

in the calculated O16  elastic differential cross 

sections, starts disappearing at energies between 200 

and 340 MeV, faster than its counterpart for O16 . The 

depth of the minima reveals important information about 
Coulomb effects, and may reduce the number of 
ambiguities in a phase shift analysis, in studying the 
scattering of both positive and negative pions from a 
nucleus (Ingram et al., 1978; Piffaretti et al., 1977; 
Germond and Wilkin, 1977). In addition, only two 
observed minima are observed as there is no complete 
experimental very-large backward-angle elastic differential 
cross sections at these energies. Very accurate large and 
very large angle data are also necessary in solving the 
uniqueness potential problem, and in solving an open 
long debate over the ambiguities in the potential 
parameters (Shehadeh, 2013b; Albanese et al., 1980). 
Also such an accurate data would confirm the superiority 
of a theoretical model in explaining pion-nucleus 
scattering mechanisms (Albanese et al., 1980). In fact 
this was also very crucial in adding  the  squared  Woods-  
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Figure 5. Our calculated O16  cross sections, represented by open circles, are 

compared to the experimental ones for C12 , represented by solid circles (Binon 

et al., 1970). The values for both cases are in harmony, and are higher for O16  

as expected.  The solid and dashed lines are just to guide the eye. 

 
 
 
Saxon real term to Satchler's potential to obtain a nice fit 
to large-angle scattering data (Shehadeh et al., 2003). As 
a whole, this sheds light on both nuclear and Coulomb 
parts of the potential. 
 
 
CONCLUSIONS 
 
This study confirms the capability of our adopted simple 
local optical potential in explaining well the measured  

O16  elastic angular distributions at eight energies 

below, a top and above resonance. The success of this 
potential is confirmed by providing a simultaneous 
theoretical explanation for the measured differential and 
integral cross sections for the scattering of both positive 

and negative pions from O16

 nucleus. It is obvious that 

the calculated reaction cross sections, for the scattering 
of charged pions from oxygen-16 nucleus, are in nice 
agreement with the published values. Also they cope up 
with their counterparts for the scattering of charged pions 
from carbon-12 nucleus; and they both follow the 32A rule 
for the obtained crest values at resonance. Also the 
changed pattern of the real part of the potential from 
attractive to repulsive at about 200 MeV is emphasized. 
The interplay between the two real potential terms is 
significant in shaping the real part of the potential, and 
supports the addition of the squared Woods-Saxon 
potential term to the real part of Satchler's  potential.  The 

inverted potential points, obtained by using inverse 
scattering  theory from available phase shifts within the 
framework of  Klein-Gordon equation, play an exceptional 
role in parameterizing the potential parameters and, as 
such, in determining the correct pion-oxygen potentials at 
all energies under consideration. In addition, such 

parameterization reveals that both 1R and 2R follow the 

31A  rule. Also, and for the first time, this investigation 
establishes that the target nucleus, being doubly closed-
shell self-conjugate one or not, did not have any merit in 
the treatment of pion-nucleus scattering problem, 
especially for ZN  tightly bound light target nuclei O16

 
and C12  , and for incident pion energies in the vicinity of 

the (3,3) resonance. 
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