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INTRODUCTION 
 
According to O. Veblen, a famous American 
mathematician, " Geometry consists of a sequence of 
statements arranged in a certain logical order but void of 
all physical meaning. In order to apply them to nature we 
identify the undefined terms (points, lines, etc.) as names 
of recognizable objects.The unproved propositions 
(axioms) are then given a meaning, and we can ask 
whether they are true statements or not. If they are true, 
we expect that the theorems which are their logical 
consequences are also true and that the abstract 
geometry will take its place as a useful branch of physics 
", Ritter  (1997). 

In fact in recent years we have witnessed a remarkable 
development in the interaction between geometry and 
physics. For instance the curvature of a manifold plays an 
important role in general relativity especially Ricci 
curvature is the keyterm in the Einstein field equations. 
There are many studies on this subject. For instance in  
El Naschie (2006), El Naschie studies the particle content 
of the standard model of high energy elementary 
particles. Also in El Naschie (2005), connections between 
Gödel's classical solutions of Einstein field equation and 
E-infinity were mentioned. On the other hand, the 
curvature of spacetime has been another research area 
for mathematicians and physicians for along time. 
Einstein's famous formula, which describes the relation 
between the curvature of spacetime and mass energy 
density, gives a great contribution science. 

Moreover,  another   research   area   for   scientists   is  

hyperbolic geometry and its relevance with the universe. 
In the past two decades, the mathematicians discuss on 
this subject with different aspects. (Stakhov and Rozin, 
2007; Abdel-All and Abd-Ellah, 2003; El Naschie, 2002, 
2004; Yildirim Yilmaz and Bekta�, 2008). 

Scientists working in the theoretical physics and 
applied mathematics have many objectives in common. 
One of the major issues of this field is Betti numbers. It is 
well-known a Betti number is the maximum number of 
cuts that can be made without dividing a surface into two 
seperate pieces. The Betti number of an object simply 
describes its features such as the number of holes and 
cavities that it possesses. Betti numbers have a wide 
scale of applications ranging from graph theory to 
electromagnetic fields. In this study we focus on the Betti 
numbers of a homogeneous Hessian manifold and also 
comment on the Betti numbers of Hessian manifolds that 
have special feature. 

The present work consists of three parts. In the first 
part our purpose is to recall the basic concepts of 
Hessian manifolds and constructions of Hessian 
manifolds of constant Hessian sectional curvature which 
corresponds Euclidean space, sphere or hyperbolic 
space according to the sign of the curvature. 

Let M�
�

¹ be a flat affine manifold with flat affine 

connection D. Among Riemannian metrics on M�
�

¹ there 
exists an important class of Riemannian metrics 
compatible     with    the    flat    affine    connection    D. A  



 
 
 
 
Riemannian metric g on M�

�

¹ is said to be Hessian metric 
if g is locally expressed by g=D²u, where u is a local 
smooth function.We call such a pair (D,g) a Hessian 
structure on M�

�

¹ and a triple (M�
�

¹,D,g) a Hessian 
manifold, (Shima, 1980, 1986, 1995, 1997). Geometry of 
Hessian manifold is deeply related to Kählerian geometry 
and affine differential geometry  Shima (1995). 

It is well known that a compact convex hypersurface 
with constant mean curvature in a Euclidean space is a 
sphere. On the other hand, Simons (1968) has recently 
done an important suggestive contribution to the study of 
minimal submanifolds in a Riemannian manifold, in which 
he has given a formula for the Laplacian of the square of 
the norm of the second fundamental form of the 
submanifold. Under the stimulus of the Simons' study Do 
Cormo, Chern, Kobayashi (1970) and (Nomizu and 
Smyth, 1969), using the similar formula to that of Simons, 
have obtained some theorems on a compact minimal 
submanifold or a complete hypersurface with constant 
mean curvature in a Riemannian manifold of constant 
curvature. (Nakagawa and Yokote, 1972) generalize this 
result by applying Simons' formula to a compact 
hypersurface with constant scalar curvature in a 
Riemannian manifold of constant curvature. Then 
Omachi,(1986) has obtained some results in the case of 
hypersurfaces in a space of non-negative constant 
curvature making use of harmonic curvature.The 
following section is on hypersurfaces with harmonic 
curvature under the stimulus of above studies. We also 
prove two theorems on Hessian manifolds. 

The last part of the study is on Betti numbers of 
Hessian manifolds that have special features. 
 
 
Preliminaries 
 

Let M�
�

¹ be a Hessian manifold with Hessian structure 
(D,g).We express various geometric concepts for the 
Hessian structure (D,g)in terms of affine coordinate 

system {x¹,...,x�
�

¹} with respect to D , i.e  ADdx =0. Here 
A, B, C,... run from 1 to n+1. 
The Hessian metric ; 
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Let γ be a tensor field of type (1, 2 ) defined by 
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where ∇ is the Riemannian connection for g. Then we 
have 
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where A
BCΓ  are the Christoffel ‘s symbols of ∇. Define a 

tensor field S of type (1, 3) by 
 
S=D γ  

 
and call it the Hessian curvature tensor for (D, g ). Then, 
we have 
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The Riemannian curvature tensor for ∇ ; 
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Shima (1995). 
 
Definition  1: For a non-zero contravariant symmetric 
tensor xξ  of degree 2 at x we set 
  

( ) ( )
xx

xx
xh

ξξ
ξξς

ξ
,

,
=  

 
and call it the Hessian sectional curvature in the direction 

xξ ,Shima(1995). 
 
Theorem 1. Let (M, D, g ) be a Hessian manifold of 
dimension 2≥ . If the Hessian sectional curvature 

( )xh ξ depends only x then (M, D, g ) is of constant 
Hessian sectional curvature.   (M, D, g ) is of constant 
Hessian sectional curvature c if and only if 
  

( )CBgAEgCEgABg
c

ABCES +=
2

.                             (2) 

 
Shima(1995). 
 
Corollary 1: If a Hessian manifold (M, D, g ) is a space of 
constant   Hessian    sectional    curvature   c,    then   the  
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Riemannian manifold (M, g ) is a space of constant 

sectional curvature 
4
c− , Shima (1995). 

 
 
Constructions of Hessian manifolds of constant 
Hessian sectional curvature 
 
In this section we shall construct, for each constant c, a 
Hessian manifold with constant Hessian sectional 
curvature c. We now recall the following result due to 
Shima and Yagi (1995) . Let (M�

�

¹, D, g) be a simply 
connected Hessian manifold. If g is complete, then 

(M�
�

¹,D,g) is isomorphic to ( ϕ2~
,

~
, DDΩ ) where Ω  is a 

convex domain in IR�
�

¹, D
~

 is the canonical flat 

connection on IR�
�

¹ and ϕ  is a smooth convex function 
on Ω . 
     
 
A. The case c = 0. 
 
It is obvious that the Euclidean space (IR�

�

¹, D
~

, 

g=(1/2) 2~
D (� (x A )²}) is a simply connected Hessian 

manifold of constant Hessian sectional curvature 0. 
 
 
B. The case c > 0. 
 
Theorem 2. Let  be a domain in R�

�

¹ given by 
 

x�
�
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1
(

2 �=

n

A
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c

, 

 
where c is a positive constant, and let  be a smooth 
function on  defined by 
 

ϕ =- 
c
1

log{x�
�
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n
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Then ( ϕ2,
~

, DgD
�

=Ω ) is a simply connected Hessian 
manifold of positive constant Hessian sectional curvature 
c. As Riemannian manifold ( Ω ,g) is isometric to the 

hyperbolic space (H(-
4
c

),g) of constant sectional 

curvature -c/4; 
 

H  = {(
1,,...,1 +nn ξξξ ) 011 >++∈ nnIR ξ }, 
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C. The case c<0. 
 
Theorem 3. Let ϕ  be a smooth function on IR�

�

¹ defined 
by 
 

ϕ =-
c
1

log( 1
1

1
+

+

=

−�
n
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where c is a negative constant. Then (IR�
�

¹, D
~

, g= ϕ2~
D ) 

is a simply connected Hessian manifold of negative 
constant Hessian sectional curvature c. The Riemannian 
manifold (IR�

�

¹,g) is isometric a domain of the sphere  
 

c

n

i
A

42

1
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=
� ξ defined by 0>Aξ  for all A.Shima (1995). 

 
For the proof of the theorems we refer to Shima(1995). 
 
 
Hypersurfaces with harmonic curvature in a space of 
constant Hessian sectional curvature 
 
Definition 2. A Riemannian curvature tensor R is said to 
be harmonic if it satisfies 
 

0=∇−∇ ikRjjkRi , 

 
where ijR  means the component of the Ricci tensor, i.e. 

.i
jikRjkR = If the Ricci tensor is parallel, the curvature is 

harmonic. However, the converse is generally not true, 
Omachi (1986). 
We consider a hypersurface M� with harmonic curvature 
immerse in an (n+1)- dimensional Hessian manifold 
M�

�

¹(c) of constant Hessian sectional curvature c by an 

isometric immersion φ :M� �M�
�

¹(c) and denote the 
induced metric tensor,the induced metric connection, the 
curvature tensor of M� and the second fundamental form 
by g, ∇ , R  and h respectively. We assume that the 

mean curvature k
khtrh =  is constant. Under these 

conditions the following formulas hold 
 

jkhilhjlhikhjkgilgjlgikg
c

ijklR −+−−= )(
4  (Gauss)    (3) 



 
 
 
 

0=∇−∇ ikhjjkhi   (Codazzi),                                     (4) 

 

0=∇ k
khi   (Mean curvature constant)  ,                    (5) 

 
0=∇−∇ ikRjjkRi (harmonic curvature) ,                   (6) 

 
where the indices i,j,k,..., run from 1 to n. 
The equation (6) implies that the scalar curvature is 
constant that is; 
 

0=∇ k
kRi .                                              (7) 

 
On the other hand, we get from equation (3) 
 

lkhl
jhjkhll

hjkg
c

njkR −+−=
4

)1( .                          (8) 

 

For simplification, we shall write 3,2
ijhijh ,... instead of 

kjhk
kjhkh 2h,1 ,... And using equation (5) 

 

 2)( jkhijkhi
l

lhjkRi ∇−∇=∇  .                               (9) 

 
Hence we know from equations (4) and ( 9) that 
 

02)(2)( =∇−∇ ikhjjkhi   .                  (10) 

 
is equivalent to equation (6). It is easy to see 
 

 02 =∇ kkhi                                             (11) 
 
from equations (9), (5) and (7) 
    First, we shall give two equations about 
 

)().(
22

mkhjmhi
lkhjlhih ∇∇=∇ , 

  

where k
ikgi ∇=∇  

 
Lemma 1. 
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Proof: 
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i 22)4(
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holds. Using equations (3),(5),(10),(11) and the Ricci 
identity we get 
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From equations (13) and (14) the equation (12) follows. 
 
Lemma 2. 
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Proof. We remark that 
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m
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holds. In fact 
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m
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implies together with equations (4) and (10) that the 
second term of the right side of equation (7) is symmetric 
with respect to i,j and k, from which equation (16) follows. 
Hence 
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On the other hand, we have 
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by equation (16). The first and second terms of the right 
side of equation (19) are reduced to 
  

k
khi

i ∇∇
2
1  and 22

2
1

h∇−   



1822          Int. J. Phys. Sci. 
 
 
 
by equation (14), respectively. Using equations 
(3),(4),(5), (11) and the Ricci identity, we get 
 

ikhl
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Therefore the third term of equation (19) can be reduced 
to 
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Finally, equation (19) becomes the equation (15). 
    We eliminate the term of trhtrh

�

 from equations (12) 
and (15) and we have 
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Taking the suitable orthonormal frame, we diagonize h 
and denote its diagonal components by nαα ,...,1 .  Then, 
the equation (21) can be written as 
 

( )2)
4

(2422
ji

c
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jijitrhh αααααα −−

≠
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where ∆  means  i
i∇∇ . 

    In the case of c=0 it is obvious that the Euclidean 

space  (IR�
�

¹, D
~

 ,g=( ( ){ }22~
2
1

ixD �	



�
�


� ) is simply 

connected Hessian manifold of constant Hessian 

sectional curvature 0. If 4trh  is constant on M�, then all 
the non-zero eigenvalues of h have a constant unique 
value on M� by (5) and (22). Therefore we can apply K. 
Nomizu and B.Smyth's (1969) arguement if M� is 
complete. Thus the following theorem is proved. 
 
Theorem 4.  Let M� be a connected hypersurface with 
harmonic curvature isometrically immersed in (n+1)- 
dimensional Hessian manifold M�

�

¹(c) by an isometric 
immersion φ  with constant mean curvature. We denote 
the second fundamental form by h 

(i) If M� is complete and 4trh  is constant on φ (M�)  then 

φ (M�) is of the form pnEpS −× , 0�p�n. 

 
 
 
 
(ii) If M� is compact, then φ (M�) is S�. 
     
 In order to consider the case of c<0 according to 
Theorem 2.3 and following equation 
 

 ( ) 	



�
�


� −
≠

−−	


��


�=∇ � 4

2
i2

12
2
122 c

ji
ji

jtrhh αααα             (23) 

 
This equation follows from equations (3),(4),(5) and the 
Ricci identity, and in our situation, the first term of the 
right side of equation (23) vanished by equation (11). So, 
we have 
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And from equations (22) and (24), we have 
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and following theorem is proved as in the case of c=0. 
 
Theorem 5. Let M� be a connected hypersurface with 
harmonic curvature isometrically immersed in (n+1)- 
dimensional Hessian manifold M�

�

¹(c) by an isometric 
immersionφ  with constant mean curvature. If M� is 

compact, then φ (M�) is the form ( ) ( )spnSrpS −× , 0�p�n 

where r= 2α -(c/4), s= β ²-(c/4) and  α and β  satisfy αβ -

4
c

=0 and pα +(n-p) β =trh. 

 
 
Hessian manifolds and Betti numbers 
 
Definition 3. Let M be a Hessian manifold. A 
diffeomorphism of M onto itself is called an automorphism 
o M if it preserves both the flat affine structure and the 
Hessian metric. The set of all automorphism of M 
denoted by Aut(M), forms a Lie group. A Hessian 
manifold M is said to be homogeneous if the group 
Aut(M) acts transitively on M, Shima (1980). 
 
Theorem 6. Let M be a connected homogeneous 
Hessian manifold. Then we have: 
(1) The domain of definition XE  for the exponential 
mapping xexp  at Mx ∈ given by the flat affine structure 
is a convex domain. Moreover XE  is the universal 
covering manifold of M with affine projection xexp : 

XE �M. 



 
 
 
 
(2) The universal covering manifold XE  of M has a 

decomposition ++= XEXEXE 0  where XE 0  is a 
uniquely determined vector subspace of the tangent 
space MXT of M at x and full straight line. Thus XE  
admits a unique fibering with the following properities: 
 

(i) The base space is +
XE . 

(ii) The projection p: XEXE +→  is given by the 

canonical projection from ++= XEXEXE 0  onto E_{x}
�

. 

(iii) The fiber XE 0 +v through XEv ∈  is a characterized 
as the set of all points which can be joined with v by full 
straight lines contained in XE . Moreover each fiber is an 
affine subspace of MXT  and is an Euclidean space with 
respect to the induced metric. 
(iv) Every automorphism of XE  is fiber preserving. 
(v) The group of automorphisms of XE  which preserve 
every fiber, acts transitively on the fibers, Shima (1980). 
 
Corollary 2. A compact connected homogeneous 
Hessian manifold is a Euclidean torus, Shima (1980). 
Acoording to the Definition 3 and Corollary 2 the following 
theorem holds. 
 
Theorem 7. Let M be a compact connected 
homogeneous Hessian manifold. Then the Betti number 
of M equals to 2. 
 
Theorem 8. Let  ϕ be a smooth function on IR³ defined 
by 
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Let (M,D, ϕ2Dg = ) be a three dimensional Hessian 
manifold with constant Hessian sectional curvature c. If g 
is complete and c<0, the Betti number of M equals to 0. 
 
Proof.  We now recall the following result due to Shima 
and Yagi (1997) Let (M�

�

¹, D, g) be a simply connected 

Hessian manifold. If g is complete, then (M�
�

¹,D,g) is 

isomorphic to ( ϕ2~
,

~
, DDΩ ) where Ω  is a convex domain 

in IR�
�

¹, D
~

 is the canonical flat connection on IR�
�

¹ andϕ   
is a smooth convex function on Ω . And according to 
Theorem 3 if c<0, the Riemannian manifold (R³,g) is 

isometric a domain of the sphere �
=

4

1

2

i
Aξ =

c
4−  defined 

by Aξ >0 for all A. This completes the proof. 
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Theorem 9. Let M be a connected hypersurface with 
harmonic curvature isometrically immersed in 3- 
dimensional Hessian manifold M³(c) by an isometric 
immersion  φ  with constant mean curvature.Then the 
Betti number of M equals to 0 if M is compact.  
 
Proof. Using Theorem 4, the proof can be made 
immediately.  
 
 
Conclusion 
     
The aim of the present work is to find the relation 
between a Hessian manifold and a hyperbolic space, 
hypersurfaces with harmonic curvature in a space of 
constant Hessian sectional curvature on one hand and 
Betti numbers of a special type Hessian manifolds on the 
other. We discuss the constructions of a Hessian 
manifold of constant Hessian sectional curvature, and 
consider the hypersurfaces in terms of harmonic 
curvature. Both subjects also have physical applications. 
Defining Hessian manifolds of fuzzy type and Betti 
numbers of it is still a great puzzle for the author. 
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