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The propagation of the optical solitons is usually governed by the nonlinear Schrédinger equations. In

this article, the two variable(%,é)—expansion method is employed to construct the exact traveling
wave solutions with parameters of two nonlinear partial differential equations (PDEs) namely, the (1+1)-
dimensional nonlinear Schrédinger-Boussinesq system and the (2+1)-dimensional hyperbolic nonlinear
Schrddinger (HNLS) equation which describe the propagation of optical pulses in optic fibers. When the

parameters are replaced by special values, the solitary wave solutions of these equations are found

from the traveling waves.
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INTRODUCTION

In the recent years, investigations of exact solutions to
nonlinear partial differential equation (PDEs) play an
important role in the study of nonlinear physical
phenomena. Many powerful methods have been
presented, such as the inverse scattering method
(Ablowitz and Clarkson, 1991), the Hirota bilinear
transform method (Hirota, 1971), the truncated Painleve
expansion method (Weiss et al., 1983; Kudryashov,
1988, 1990, 1991), the Backlund transform method
(Miura, 1978; Rogers and Shadwick, 1982), the exp-
function method (He and Wu, 2006; Yusufoglu, 2008;

Zhang, 2008; Bekir, 2009, 2010), the tanh-function
method (Abdou 2010; Fan, 2000; Zhang and Xia, 2008;
Yusufoglu and Bekir, 2008), the Jacobi elliptic function
expansion method (Chen and Wang, 2005; Liu et al.,

2001; Lu, 2005), the(%)-expansion method (Wang et

al., 2008; Zhang et al., 2008; Zayed and Gepreel, 2009;
Zayed, 2009; Bekir, 2008; Ayhan and Bekir, 2012;
Kudryashov, 2010a, b; Aslan, 2010; Zayed, 2010;), the

modified (%)—expansion method (Zhang et al., 2011),
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the (%,Gi)-expansion method (Li et al., 2010; Zayed
and Abdelaziz, 2012; Zayed et al., 2012; Zayed and
Alurrfi, 2014a, b), the Riccati equation method (Ma and
Fuchssteiner, 1996), the bilinear method (Ma, 2011,
2013), the transformed rational function method (Ma and
Lee, 2009), the multiple exp-function method (Ma and
Zhu, 2012) and so on.
G

The key idea of the one variable (ﬁ)-expansion

method is that the exact solutions of nonlinear PDEs can

be expressed by a polynomial in one variable (G—) in

G
which G =G (&) satisfies the second order linear
ordinary differential equation (ODE)
G"E)+AG'(E)+ G (E)=0, whered, i are

d

constants and = . The key idea of the two variable

de

(%',Gi)-expansion method is that the exact traveling

wave solutions of nonlinear PDEs can be expressed

by a polynomial in two variables (G—) and (é) in which

G
G =G (&) satisfies the second order linear ODE

G"(&)+AG(E)=pu, where A and pare constants.

The degree of this polynomial can be determined by
considering the homogeneous balance between the
highest order derivatives and the nonlinear terms
appearing in the given nonlinear PDEs. The coefficients
of this polynomial can be obtained by solving a set of
algebraic equations resulted from the process of using
this method. Recently, Li et al. (2010) have applied the

(%,é)-expansion method and determined the exact

solutions of the nonlinear Zakharov equations, while
Zayed and Abdelaziz (2012), Zayed et al. (2012), and
Zayed and Alurrfi (2014a, b), respectively have used this
method to find the exact solutions of the nonlinear
combined KdV-mKdV  equation, the nonlinear
Kadomtsev-Petviashvili equation, the nonlinear PDE for
nanobioscinces and two higher order nonlinear evolution
equations namely, the nonlinear Klein-Gordon equations
and the nonlinear Pochhammer-Chree equations .

The objective of this paper is to apply the two variables

(%,é)-expansion method obtained in Li et al. (2010),

Zayed and Abdelaziz (2012), Zayed et al. (2012), and
Zayed and Alurrfi (2014a,b) to find the exact traveling
wave solutions of the following two different nonlinear
equations which are not yet discussed:

(i) The (1+1)-dimensional Schrédinger-Boussinesq
system (SB-system) (Kilicman and Abazari, 2012):

iu, +u,, —auv =0,
2 (1)
Vie =V TV —b(|U| )xx :O’

Where t >0, X e[O,L],forsome L >0, and a,b are

real constants. Here, u and v are, respectively a complex-
valued and a real-valued function.

(i) The (2+1)-dimensional hyperbolic  nonlinear
Schrédinger (HNLS) equation (Fen, 2012):

. 1 1 2

Uy + 2 U~ Uy +u|"u =0, 2

Where u(x,y,t) is a complex-valued function which
represents the slowly varying envelope of propagation,
X is the dimensionless variable, Yy is the propagation

coordinate and t is the time.

The SB-system (Equation 1) is considered as a model
of interactions between short and intermediate long
waves, which is derived in describing the dynamics of
Langmuir soliton formation and interaction in a plasma
(Makhankov, 1974) and diatomic lattice system (Yajima
and Satsuma, 1979). The SB-system has been discussed

G

method and its exact solutions has been found. Equation
2 can be derived from optics (Gorz and Haelterman,
2008) and large-scale Rossby waves (Tan and Wu,
1993). Various types of HNLS equations describing time
and space evolutions of slowly varying envelopes have
wide applications in various branches of physics (Tang
and Shukla 2007; Li, 2007). HNLS equation has been
investigated in Fen (2012) using the theory of bifurcations
of dynamical system and its exact solutions have been
presented.

in Kilicman and Abazari (2012) using the (G ')—expansion

DESCRIPTION OF THE TWO VARIABLE (' .4)-
EXPANSION METHOD

Before the main steps of this method are described, the
following remarks are needed (Li et al., 2010; Zayed and
Abdelaziz, 2012; Zayed et al., 2012; Zayed and Alurrfi,
2014a, b):

Remark 1

If the second order linear ODE is considered:
G"(&)+AG (&) =u, ®3)

Gl, W:é,thenweget:

and set ¢=



¢ == +uy -2, w'=—gy. @)

, d
Where A and x are constants while '= 9z

Remark 2

If 1 <0, then the general solution of Equation 3 has the
form:

G (&) = A, sinh(E=2) +A, cosh(Ev=2) + £, 5)

Where A, and A, are arbitrary constants. Consequently,
we have

A
yi=—— (0" -2uy + ), ©)
o+ u
A2 2
Where o, = A —A,

Remark 3

If A >0, then the general solution of Equation 3 has the
form:

G (&) =A,sin(&VA) +A, cos(E4A) +£, (7)
and hence
2 /l 2
= (" - 2uy + 1), (8)
Ao, —p

Where o, =A” +A;

Remark 4

If A =0, then the general solution of Equation 3 has the
form:

G (&) =458 +AS+A,, 9)

and hence

=~ 2uy) (10)
AZ—2uA, '

Suppose we have the following nonlinear evolution
equation.
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Fu,u,,u,,u,,..)=0, (11)

Where F is a polynomial in u(x,t) and its partial
derivatives in which the highest order derivatives and
nonlinear terms are involved. In the following, the main
G' 1
G'G
al., 2010; Zayed and Abdelaziz, 2012; Zayed et al., 2012;
Zayed and Alurrfi, 2014a, b):

steps of the ( )-expansion method are given (Li et

Step 1

The traveling wave transformation

ux,t)=u(d), &=x —-Ct, (12)

Where C is a constant, reduces Equation 11 to an ODE
in the form:

Pu,ulu"..)=0, (13)

Where P is a polynomial of u(&) and its total derivatives
with respect to & .

Step 2

Assuming that the solution of Equation 13 can be
expressed by a polynomial in the two variables ¢ and
v as follows:

N . N .

u(f):ao+zai¢l +Zbi¢kl‘//a (14)
i1 i1

Where a,,8, and b,

(i =1,2,...,N) are constants to

be determined later satisfyinga/ +bZ #0.

Step 3

Determine the positive integer N in Equation 14 by
using the homogeneous balance between the highest-
order derivatives and the nonlinear terms in Equation 13.

More precisely we define the degree of u(&) as

D [u (é‘)]zN which gives rise to the degree of other
expressions as follows:
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[qa
p|d “}:N +q,
(15)

det

- e
D up(j?l:j =Np+s(@+N).

Therefore, we can get the value of N in Equation 14.

Step 4

Substitute Equation 14 into Equation 13 along with
Equations 4 and 6, the left- hand side of Equation 13 can

be converted into a polynomial in ¢ and y, in which the
degree of  is not longer than 1. Equating each
coefficients of this polynomial to 0O, yields a system of
algebraic equations which can be solved by using the
Maple or Mathematica to get the values of
a,b,,C,u,A,A, and A where A<0. Similarly,
substitute Equation 14 into Equation 13 along with
Equations 4 and 8 for A > 0or Equations 4 and 10 for
A =0, we obtain the exact solutions of Equation 13

expressed by hyperbolic functions, trigonometric
functions and rational functions, respectively.

APPLICATIONS

Here, the method described earlier is applied to find the
exact traveling wave solutions of Equations 1 and 2
which are very important in the mathematical physics and
have been paid attention by many researchers.

Example 1

The (1+1)-dimensional nonlinear

(Equation 1)

SB-system

We start with the (1+1)-dimensional nonlinear SB-system
(Equation 1). Assume that the solution of Equation 1 can
be written as:

_ in
v (x,t) =V (5),
Where£=kx +ot, n=px +qt and Kk, w, p,q are
constants, | =+/—1. Substituting Equation 16 into

Equation 1, we have the following system of nonlinear
ODEs:

k2U "+i (2kp + w)U '—aUV —(p?+q)J =0, 17

(@ —K2V "+kV @ _pk U ?)" =0. (18)

Integrating Equation 18 twice and taking integration
constants to be 0, the Equations 17 to 18 reduces to the
following system:

k2U "+i (2kp + @)U '—aUV —(p?+q)J =0, (19)
(0® —k*V +k¥V "—bkU?=0. (20)

Considering the homogeneous balance between the
highest order derivatives and the nonlinear terms in
Equations 19 and 20, we obtain N = M = 2
Consequently, Equations 19 and 20 have the formal
solutions:

U (&) =y + (&) + a,8°(€) + By () + B &)W (&) (1)
V (£) =Co +Cih() +C,8" (§) +dy (£) +d 9 () () (22)

Where o, ¢, ,, B, 3,,C,,C;,C,,d, and d, are
constants to be determined later satisfying a? + f3; # 0,

cZ+d2 #0. There are three cases to be discussed as
follows:

Case 1: Hyperbolic function solutions (4 <0)

If A <0, substituting Equations 21 and 22 into Equations
19 and 20 and using Equations 4 and 6, the left-hand
sides are converted into polynomial in ¢ and i . Setting
each coefficient of this polynomial to 0, yields a system of

algebraic equations in o, o, a,, B, f,,Cy, C.,C,,d,,

d,,u, 1,0,k ,pandq asfollows:

apg,d, A

—aa,c, + 6k *a, + — B
Ao, +u

-0,

21 (2kp + 0)a, + 2k *a, —acrg, —emzcl-%(—a/fldz ~afd, 6k *B,u) =0,
Ao+ u

1

—aa,d, +6k?B,—asc, =0,

2
—(p?+q)a, —i (2kp + W), —aa L, —aac, —aac, +8k @,H%@dzz
Ao+
A .
—m(—aﬂldlﬂ (2kp + @) B+ K (2a,00" - 1)) =0,
2,

=0,

=2i (2kp + @) B, —acd, —actd; -k * (10a,u- 2 ) -afc, -afe, - —5
Ao+



—(p?+q)a, —2i (2kp + w)a,A —aac, —aac, + 2k *a, A

2{2
+m(aﬁ1dz +af,d, +6k’Bu) =
1

—aod, —aad, +k*(-3o,u+58,4)-afc, -apfe

221
+ 1201 e (_aﬂ1dz -apd, -6k zﬁzﬂ) =0

o= (P"+0), +i (2kp +0) (<, + 2a,41)

k 21(181 _4a2ﬂ)+i (2kp +w)(_ﬂz/1+a1:u)_aaod1 _(pz +0) 4, —apc,

20u i (—aﬂldl +1 (2kp + @) B+ K * (20,14° _ﬁlﬂ)) -0

t—3
Ao +u

2

. 2 :
i (2kp + w)Aet, + 2K "o, A2 —aa e, - Fot it (—aﬂld1 +i(2kp + o) Bu+k? (20:2;12 —ﬂly))

1

~(p?+0)a, =0

bk 224
2

6k ‘c, —bk 2a + 5
Ao+ u

:0'

2k e, — 20k Patct, + ——— (6K “d -+ 20k 2, ) =

Ao +u
—2bk ’at, 3, + 6k *d,, =0,

(@ —K?)e, +8k ‘o, 2 ~bk * (24, +af)—%(k4(2c2y2 ~dyu)-bk*f7)

o+ 1
bk ,52/12
120'1+,u
2
_Zbkz(alﬂz+a2ﬂ1)+k4(2d1—10(:2/1)—w 0,
Aoy +u

2
(0" —Kk?)e, + 2k ‘o, A - 20k ", +%

(6k ‘d, i+ 20k *5,3,) =0,
o, t+u

20u

1

K (~3c,+50,2) - 20k (@, + )+ 0"~k )d, = (sk“d +2KBB,)=0,

40, o) 2K+ (0K P)d Z”f (K (2t )08 ) =0,

2
1

2

(@ —k?)o, + 2k 4%, ~bk *af - 7 (K (2e0" )bk 7 ) =0

Ao+

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1

Consider
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K2— 2 20, a)z—kz)
,u:O,/I: 2k4 Oy = 0(11 0(12 Oﬂl 0,62 13 T, (23)
3(k —0)) 6k 2 o ot -2k
= E ,CI:O,CZ:T,dlzo,dZ:O,p:—i,q: TR
Where o > K.

From Equations 5, 16, 21, 22 and 23, we deduce the
traveling wave solutions of SB-system (Equation 1) as
follows:

(24)

A, sinh( 5

2 2 A, cosh f,’ +A sinh(é, |2 )
u(g:): i3(60 k \/:T[ 2k eirz’

kZ
)+A, cosh(
(¢ 2k“ ]

3(k? -0 k Acoshg,’ +Asmhcf 4) (25)
-2 |

a? o -k -k
Asmh(g\/THA cosh(gJ 5 )

In particular, by setting A, =0and A, #0 in Equations

24 and 25, we have the kink and bell shaped solitary
solutions

~ S(a)z—kz)_ o —K2 PERDE , (26)
u(§){i kz\/zﬂ |sech(§4/ o )tanh(¢ o )}e ,

v(é‘):{—%sech (& 22k4 )} (27)

while, if A, #0and A, =0, then we have the anti-kink
and anti-bell shaped solitary solutions

)CSCh(é w;;!‘(z)coth(f [0 —kz):leiq’ (28)

B +3(w2_k
u@@)=|+ b

2k ¢
3(w2—k2) . o — o
\Y =—CSC
(&) < (& 2k4 ) (29)
) > —2k?
here £=kx +ot, n=—--X +————
where =70k 2K
Result 2
Consider
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K?—o? 2(k* - o) 3>
u=01= T =1 ot a,=0,a, i\/ﬁ,,@:O,
(30)
al(alz kz) 2(k2—a)2) k2
B== ab 1Co ak? ¢, =0c,=— d1=0
G b0 g MK 50
: a 2k’ 4k ?
where o >K.

In this result, we deduce the traveling wave solution of
SB-system (Equation 1) as follows:

o’ -k? ‘
)

)+A, cosh(é\/ wzk_Ak 2) D)

2 |2
2(k2—a)2) wz K2 (A cosh(& ® )+A,sinh(¢
+ +

U(é:):_kleﬁ_k\/_LA nh\/ k
k*

_2(k —a)) s k

In particular, by setting A, #0and A, =0in Equations

31 and 32, we have the anti-kink and anti-bell shaped
solitary solutions

u()= (wZJ:_b) [?Zﬂcoth(é o'

k
2 )+csch(§,fw2k_4k 2 )ﬂe”,

(33)

x[coth(f ot .

V(&)= —2+3coth(§4’w2;4k2)
k (34)
x{coth(g o’ - : )+csch(§«/w2k_4k : )]]
2 2
where £=kx +mt, =——ox + LA ZSey

2k 4k ?

-1 (2kp + ) Aa, + 2k ", A2 ~aa -

Case 2: Trigonometric function solution (4 >0)

If A >0, substituting Equations 21 and 22 into Equations
19 and 20 and using Equations 4 and 8, the left-hand
sides are converted into polynomial in ¢ and . Setting
each coefficient of this polynomial to 0, yields a system of
algebraic equations in o, o, a,, B, f,,Cy, C.,C,,d,,

d,,u, 2,0,k ,pand q asfollows:

ap,d,4
2,2

—aa,C, + 6k ‘a, +
U —Ao,

=0,

2 (24p + 0)a, 2K, -0, -, (a0, ~afd, -6k “B) =0,
w-4Ao,

—aa,d, +6k’B,—apc, =0,

Aapd,
2 2

—(p*+q)a, —i (2kp + w)e, —aa ¢, —aag, —aaL, +8k ‘oA +
H-Ao,

A .
Ry (—aﬁldlﬂ(2kp+a))ﬂ2,u+k2(2azlu2—ﬂhu)):0
2

2uapd,
y=2o,

—2i (2kp + @) B, —acd, —aa,d, -k * (10a,u- 28 ) -afic, —afic, -

—(p? +q) e, —2i (2kp + W), A —aa

12
+m(aﬁld2 +aﬁ2d1 + 6k zﬁz,u) =

2
—aagC,+2K ‘oA

—aod, —aad, +k*(-3a,u+58,4)-afc, -afe

2Au
' u =i, (_aﬂldz —afd, -6k zﬁz/‘) =0

0= (p*+0)B, +1 (2kp +0) (-, +20,11)

k Zﬂ-(ﬂl_‘lazﬂ)‘*‘i (2kp +a))(—ﬂ2/7.+a1,u)—aa0d1—(p2 +q)B, -aBg,

2Au ;
+ﬂ2_7/120_2(—aﬁ1d1 +i (2kp + @) B +k? (20:2/.12 —ﬂly)) =0

2

ﬁ(_aﬁldl +1(2kp + @) fpu+k : (zazﬂz _ﬂyu))

~(p*+q)a, =0

bk 2824
2 a2

=0,
u —Ao,

6k ‘c, —bk 202 +

2k “c, — 20k *anar, +——y— (6K *d -+ 2K P, ) =
u —Ao,

—2bk 2az, 3, + 6k d, =0,



(07 —K?)c, +8k ‘e, bk (2,0, +a7 )~ — lﬁ (* (20,2 ~d,u)-bk 57

H =10,
bkﬂiz 0
/U /120_2_'
2
—2bk (e, B, + a, 8,)+k * (2d, —10c,41) — M 0,
u-—Aio,

2

(@ —k?)e, +2k ‘e, 2 — 20k *ary, +— L (6k ‘d,pu+ 2k *,,) =0,
Ao,

K (<Boyu+50,4) 20K (0, + )+ -

k?)d, - M” (Gk“d S2KEA,)=0
y-

K “A(d, —4c 1) — 2Dk 2are B, + (0 —k 2)d, + 24 (K (200" ~dypa) ~bk * 37 ) =0

u=Aa,

2
2o ~ 2 _/1120_2 (k ! (Zczﬂz _duu)_bk Zﬂiz) =0

(0" —k?)c, +2k “2%c, —bk

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1

Consider

22 k2—
1=04=""9 o 0,0-0a,-0p-0p-+3 M (35)

2k * ab
3(k2—w2) 6k ? o o —-2k?
cO:T 01—002:—,d1:0,d2:0,p:—ﬂ,q: E
Where kK > .

From Equations 7, 16, 21, 22 and 35, we deduce the
traveling wave solutions of SB-system (Equation 1) as
follows:

— — (36)
3(k?-o) [5, | AcosC ‘ ) Asine ‘ ||
U@ =[tm— [ 7| P
k ab Asin(e kz—w2)+A cos(e kz_wz)
! 2k* 2 2k*
3(k2—w2) A cos((f ) A sm(:f ) (37)
V(f): ak 2 1+
A sm((f\/ 7 )+A cos(g\/

In particular, by setting A; =0and A, #0 in Equations
36 and 37, we have the periodic solutions

_ _3(k2_a)2) \/kz—a)z Ikz_wz . (38)
U(ee)—["'kz\/zmsec(f oK )tan(f\l oK )}e ,
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Vi (g) — Msec (§ %) (39)

ak2

while, if A; #0and A, =0, then we have the periodic
solutions

_ 3(k2—a)) \/kz—a)z K?—a® | | i, (40)
u(é:)_l:i sza_b CSC(é: 2k4 )COt(§ 2k4 ):le ’
3(k2— ) o2
\% = ————~-CsC _— (41)
& K 2(& 2k“ ),
2 2
W o -2k
where £ =kx +ot, n=——X +———t.
2k 4k
Result 2
Consider
K?—w 2(k*-w?) 3?
u=0,1= o ,O—iW,aI az—i\/ﬁ,ﬂl—o,( 2)
4
r:)'z(k2 a)z) Z(kz—a)) 3k 2
B, =13 b 1 Co = T ¢, =0,c,= a —.,d,; =0,
3o, (k*-o) o 4k 2 —50°
d2= 1p=_71 =7Z’
a 2k 4k
Where k > @.

In this result, we deduce the traveling wave solution of
SB-system (Equation 1) as follows:

2
2 2 2 2
2(k2—wz) z_wz A, cos( 5,/u)—Azsin(§ fk @
u()=|+ K

)
i kz\/zm k J_ Asm(§\/
3(k2—a)2

_7 | (43
(fJ"k—f") (43)
A, cos( ch ) A, sin(& /
i 72
k? ab '
[A sin(¢ ’ )+A cos(é )]

Z(kz_wz) _w Acosef -A, sin( g,/
V()=

2 + 2 2 2
& ak A 5|n(§JT)+A cos(.f\j k_“w ) (44)

A, cos(&

(ko) oy o) agsinge [

k k*
A sin(¢ o )+A, cos(é T)
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In particular, by seting A =0and A,#0 in
Equations 43 and 44, we have the periodic solutions

+( {
= \/_ [2+3tan(§ (45)
[tan(s‘J i SeC(chI )He

V(§)=(kak;)){2+3tan(§,,w)[tan(g k- 2)—sec(g kzk_AWZ)H, (46)

while, if A, #0and A, =0, then we have the periodic
solutions

_ (sza)z) kZ_wz
u@)=+ oD 2+3001(¢\ [~ 5) @)
x[cot@ k2_4w2)+csC(§ kz_sz)Heiv‘
v(g):(kakz ) 2+3cot g\ll 2)[cot(gvlk )+ s é\llkz—w )] ’ (48)
w 4k 2 —50°
Where E=kX +wt, n=——X +————t.
: =7k e

Case 3: Rational function solutions (4 =0)

If A =0, substituting Equations 21 and 22 into Equations
19 and 20 and using Equations 4 and 10, the left-hand
sides are converted into polynomial in ¢ and i . Setting
each coefficient of this polynomial to 0, yields a system of
algebraic equations in o, o, ,, B, S,,Cy, €1,C,,d;,

d,,u,o,k ,pand q as follows:

—aa,C, +6k °a, —Zaﬂ# =
AZ_2uA,

~2i (2kp + @)at, + 2k *e, ~aaC, ~aarg, -

1

ﬁ(aﬂldz+aﬂzoll+6k Bu)=0
—aa,d, +6k’B,—apc, =0,

—(p* +0)a, —i (2kp + @), —aac, —aac, —aaL,

1 i 2 2 _
+m(—aﬁldl+| (ka +a))ﬁ2ﬂ+k (20’/2” —ﬂllu>)_

-ape, + ZZyaﬂzdz =0,
AZ-24A,

-2i (2kp + o) B, ~aad, —acd, —k* (100,123 ) -afic,

—(p*+09)e, —aac, —aac, =0,

-aayd, -aod; -3k ’ -afie -afc, - (p° +0),+1(2kp + o) (_ﬂl + Zazﬂ)

2
T g‘A (ad, +apd, +6k*f,u)=0

i (2kp + @)y u—aad, —(p* +9) B, —afc,

24 i 2 (2 2 _
_m(—aﬂldl+l(2kp+a))ﬁz,u+k (2a, —ﬂly))_

—aaC, —(p? +Q)a, =

bk 2 37

6k ‘c, —bk *of ——— L2 =
2 2T AT 2uA,

2k 4C1 —2bk 20.’1(12 - ﬁ(Gk 4d Mt 2bk zﬂlﬂz) =

) — 2LA,
_2bk 2,3, +6k “d,, = 0,

1
A7 —2uh,

2 2
10c, )+72?k Pek o,
AZ—2uA,

(0® —k?)e, bk * (2ayat, +at) + (K* (2,17 ~dypa) ~bk *7) =0,

—2bk 2 (e B, + o, 3, ) +k * (2d, —

(0)2 —kz)c1

2
-3,k - 20k * (0, B, +a1ﬁ1)+(012 -k 2)d2 +/-\12 —g,llAz

—2bk 2oy, =0,

(6K ‘duu+ 20k *B B, ) =0

2 2u
: )dl_Af—ZyAz

(0" —k*)c, —bk *a =0.

~20k Zar, 3, +(o” - (k* (2c,0° ~dyue) bk * 7 ) =

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1
Consider
6k 2 49 +1
#=0,,0,=0,¢1=0,0) = \/_ﬂl e ( 4a )’
(49)

6k *

c1:0,02:,dl:O,dZ:O,p:—;q:q,a):k.



From Equations 9, 16, 21, 22 and 49, we deduce the
traveling wave solutions of SB-system (Equation 1) as
follows:

ek (A Y ., (50)
“(5"iﬁ[Ag+AJe !
v(§)=—(4j”)+6"2[ Ay ] (51)

a a |AE+A,

Where £ —kx +wt, n:—%x +qt.

Example 2
The (2+1)-dimensional HNLS equation (Equation 2)

Here, we study the (2+1)-dimensional HNLS Equation 2.
To this end, we assume that the solution of Equation 2
can be written as:

ux,y,t)=w(&e'”, &=x+ay —ct,p=mx +ny +at, (52)

where W (&) is a real function of & and a,c,m,n,®

are constants to be determined. Substituting Equation 52
into Equation 2, we obtain

©*-IW [’ —2n—(a+wc)’ W —2W ° =0, (53)

Where ¢? #1.

By balancing between W "with W %in (53) we get
N +2=3N = N =1. Consequently, Equation 53 has
the formal solution:

W (&) =, + (&) + By ($), (54)

Where o, and 3, are constants to be determined later

satisfying o + 37 #0. There are three cases to be
discussed as follows:

Case 1: Hyperbolic function solutions (A4 <0)

If A <0, substituting Equation 54 into Equation 53 and
using Equations 4 and 6, the left-hand side of Equation
53 becomes a polynomial in ¢ and . Setting the
coefficients of this polynomial to be 0, yields a system of
algebraic equations in «,, o, f,a,c,m,n, o, i and A as
follows:
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2
2(c2-1)ey 200 -22AL g
o+
4p°2° A
e —PAH -((€*-1) B+ 60,87 =0,

(A0, + yz)z Koyt

262
60 B, +2(c” 1) B+ "2 =0,
A O L
2 2 2 2 Galﬂlz/lz
~(&" —2n - (@+0c)’) , —6aey +2(c —1)a1/1+m:0,

12¢, B2 Au
-3(c® 1) qu—12a,a, 5, —ﬁ =0,

gﬁfﬁz,uz . Zﬁfﬁz

—(@* —2n—(a+wc)?) B, —6a; B, +(c* —1) fiA—

(/120'1+/12)2 Ao+t
_#f#z((cz—l)ﬁlerGaoﬁf):O,
1
(@ -2 —-@+0C)) oy - 200 + aL Y B 2((02—1)ﬂ1u+6a0/3f):0.

(120'1 +4 )2 Moyt

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1

Consider

14=0,1=4a,=0,a, =#Jc* -1, =0,a=a,c=C,0=w, (55)

n= (% @* +A)(1-c?) —a(%a +Ccw),

Where ¢ >1.
From Equations 5, 52, 54 and 55, we deduce the
traveling wave solution of Equation 2 as follows:

o Acosh(EV=2) + A, sinh(gV=2) ) ., (56)
HeY ) = A 1)[Alsinh(fJ_ﬂ.)+A2cosh(§J_i)]e'

In particular, by setting A, =0and A, #0 in Equation
56, we have the kink shaped solitary solution

u(x,y,t) =2-A(c? -1) tanh(&v-2)e', (57)

While, if A, #0andA, =0, then we have the anti-kink
shaped solitary solution

u(x,y,t)= i«/—/”t(cz —1) coth(E—A)e'”, (58)
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Where

E=x+ay -Ct, p=—(a+ac)X +((;a)2 +i)(1—cz)—a(;a+cw)jy +at.

Result 2
Consider
k71 c?-1)(A%0, + 1

c=C,w=wn=(-c )[;a}2+ /1) (;a+Ca)),

where ¢? >1.
In this result, we deduce the traveling wave solution of
Equation 2 as follows:

“A?-1)| A cosh(EN=2)+A,sinh(Ey=7)
2| Asined=) A cosER) | (60)

+\/_ (02 —1)(/1201+/12) 1
4 A, sinh(ExZ) + A, cosh(£/=2) + #

ux,y.t)=|+

In particular, by setting A; #0, A, =0 andx=0 in

Equation 60, we have the anti-kink and anti-bell shaped
solitary solution

u(x,y,t)= J_r“_/l(gz_l)(coth(f\/—_/%) + csch(é;\/—_/l))e‘”, (61)

Where
A1, 1 1
E=x+ay —ct, n=—(a+ac)x +[(1—c )(za) +4/1j—a(2a+ca))jy +at.

Case 2: Trigonometric function solution (4 >0)

If A >0, substituting Equation 54 into Equation 53 and
using Equations 4 and 8, the left-hand side of Equation
53 becomes a polynomial in ¢ and . Setting the
coefficients of this polynomial to be 0, yields a system of
algebraic equations in «,,;, f#,a,c,m,N, @, u and A
as follows:

6c, B

2(c* 1) —2cx +ﬂ2_1202

=0,

AR 2% A
(ﬂz _12262)2 " w-Ao, ((

c’ _1)181/1+ 60!0ﬂ12) =0,

2
6,0 +

2°A

p=2’o,

6o, +2(c’ 1) B, + =0,

—(@*=2n —(a+a)c)2)051—6015051+2(c2 —1)051/1+7:O,
7

12a1ﬂ 12 ﬂ’lu O

=3(c” 1)y u—120,x
( ) =120, — /120_2

8ﬂ1312/u2 s Zﬂfiz
(IUZ _AZGZ )2 luZ _1202

(&’ -2n-(@+wc)’) f,-6a;f,+(c” -1) fA-

2,
483 0% N 22
(w2-ia,) WA,

((c2 1) f+6a,7) =0,

~(&*-2n-(a+wc)?) a, -2 +

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1

Consider
14=0,A=2,a,=0,a, =+\c’ -1, 3 =0,a=a,c =C,0 = o, (62)
n= (%af +A)(1—cz)—a(%a+0w),

Where ¢ >1.
From Equations 7, 52, 54 and 62, we deduce the
traveling wave solutions of Equations 2 as follows:

o fie | AosENA) A sineNA) ) (63)
HOGY.E) =2 A D(A sin(EN2) +A, cos(e:\/_)]

In particular, by setting A, =0 and A, # 0in Equation
63, we have the periodic solution

=F, M(c2 —1) tan(EVA)e', (64)

while, if A, #0 and A, =0, then we have the periodic

solution
=+JA(c? —1) cot(EN[A)e', (65)

u(x,y.t)

u(x,y,t)



where

E=x+ay —ct, n=—(a+ac)X +[(;wz+i)(1—c2)—a(;a+cw))y +at.

Result 2

Consider

2 _ 21\ Ao — i
H=mA=ha=00=1 Cz 1'/31=i ( )(4;2 )

a=a, (66)

c=c,0=0,n=1-c?) 1a)2+lﬂb 7a(£a+Cw),
2 4 2

Where ¢ >1.
In this result, we deduce the traveling wave solution of
Equation 2 as follows:

u(x,y,t)= J_r\/m A, cos(£4/2) - A, sin(éV2)
2 Alsin(iﬁ)+Azcos(§ﬁ)+% 67)

N ) 1

4 A,sin(eNT) + A, cos(eT) +

In particular, by setting A, =0, A,#0 and x#=0in
Equation 67, we have the periodic solution

u(x,y,t) :i@(—taﬂ(ﬁﬁ)ﬁec(fﬁ))e‘”, (68)

while, if A;#0, A, =0 and =0, then we have the
periodic solution

u(x,y.t) =i7‘/1(czz_l)(cot(éﬁ)+csc(§ﬁ))e"’, (69)

Where
A1, 1 1
E=x+ay —Ct, n=—(a+ac)x +[(1—c )(Ew +4ﬂj—a(2a+Ca))jy +a.

Case 3: Rational function solutions (4 =0)

If A =0, substituting Equation 54 into Equation 53 and
using Equations 4 and 10, the left-hand side of Equation
53 becomes a polynomial in ¢ and . Setting the
coefficients of this polynomial to be 0, yields a system of
algebraic equations in ao,al,ﬂl,a,c,m,n,a) and u as
follows:
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2
2(c2—1)a1—2af——f“1ﬁl =0,
A2 —2uA,
4:Bl3ﬂ _ 1

((c*~2) ur+6a,57) =0,

—6a 0’ +
T (A -2um,) A 2uA,

2 _ 0
A —-2uA,

6o, +2(c’ 1) B, -
—(@® -2n —(@+wc)?) o, —6ai e, =0,

2 12a1ﬁ12/,z _
_3(C —1) ou —12a0a1ﬂ1 + m = 0,

8ﬂ13,u2
(A —2um,)

2
+A12_—;;A2((c2 ~1) B+ 60,87 ) =0,

—(@® —2n —(a+a)c)2)ﬁ1 —6a§ﬁ1 -

—(@* -=2n—(a+wc)*) a, —2a; =0.

On solving the above algebraic equations using the
Maple or Mathematica, we get the following results:

Result 1

Consider

#=0,0,=0,q=0,8 =%A, c’—l,a=ac=C,w=w, (70)

1, ) 1
n=-w"(l-c°)-alza+cw),
3 1-c%) (2 )

where ¢® >1.
From Equations 9, 52, 54 and 70, we deduce the
traveling wave solutions of Equation 2 as follows:

u(x,y,t):i»\/cz—l[LJe“’, (71)

AE+A,

Where

E=x+ay —Ct, p=—-(a+ac)x +(;a)2(1—02)—a(;a+ca))jy +ak.

Result 2

Consider
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©* -D(A —2uA,)

H=pa,=0,0=1% >

b=t

a=a, (72)

Je2-1
2

c=C,w=wm,n =%a)2(1—c2)—a(%a+cw),

Where ¢? >1, A12 >2uA,.

In this result, we deduce the traveling wave solution of
Equation 2 as follows:

R T € -1)(A —2uA,)
“(X’y’t)_{ 2 [g§2+A1§+AJi 2 (73)
xil e'”
5E+AL+A, Y
where

E=x+ay —Ct, p=—(a+ac)x +[;w2(1—cz)—a(;a+cw))y +ak.

PHYSICAL EXPLANATIONS OF SOME OBTAINED
SOLUTIONS

The obtained solutions for the two equations (1) and (2)
include the kink, anti-kink soliton solutions, bell and anti-
bell soliton solutions as well as periodic and rational
solutions. The graphical representations of some of these
solutions are plotted by taking suitable values of involved
unknown parameters to visualize the mechanism of the
original equations (Figures 1 to 6).

CONCLUSIONS

The two variable (%,Gi)—expansion method is used in
this article to obtain new exact solutions of two nonlinear
PDEs namely, the (1+1)-dimensional nonlinear
Schrodinger-Boussinesq system and the (2+1)-
dimensional HNLS equation. These exact solutions are
presented in terms of the hyperbolic, trigonometric and

rational functions. As the two parameters Al and A2
takes special values, we obtain the solitary wave
solutions. From Equations 3 and 14, we can deduce that

the two variable (%,Gi)-expansion method reduces to

the (%')—expansion method. So the two variable

G’ G
expansion method. The used method in this paper is

(G' é) -expansion method is an extension of the (G )

more effective and more general than the (%)
expansion method because it gives exact solutions in
more general forms. In summary, the advantage of the

9.x 10"
8. % 10“‘«Jl
7.% 106--
6.x 10"
5.x 101
4.x 10'%—
3.x 106
2.x 1016 .
1x 1016 &
0-F

Figure 1. The plot
k=Lw=2a=1b=1

of U(X,t) of

Equation 33 when

Figure 2. The plot of 34 when

k=2,w=3a=3.

v(x,t) of

Equation

G'G G
expansion method is that the solutions obtained by using

two variable (G' 1 )—expansion method over the (G )
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Figure 3. The plot of U (x,t)of Equation 38 when Figure 5. The plot of w(0,y,t) of Equation 57 when
k=20=la=1b=1. A=-lec=4a=2.

Fi 4. The plot of f Equation 39 wh = =la=
'gure eplotofv (x,t)of Equation 39 when k =2,w=1a=1. Figure 6. The plot of W (0,y,t)of Equation 68 when

A=lc=2,a=1

the first method recover the solutions obtained by using
the second one. On comparing our results obtained in
this article with the well-know results obtained in Kilicman
and Abazari (2012) and Fen (2012), we conclude that our
results are new and not published elsewhere.

Finally, all solutions obtained in this article have been
checked with the Maple by putting them back into the
original equations.
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