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In this paper, we proposed a dimension reduction, based on the direction of arrival and estimation 
approach, using an array of spatially distributed electric and magnetic component sensors, and the 
array comprises subarrays that are well calibrated individually but not with each other. To verify our 
proposed method, computational complexity of the proposed method was analyzed and compared with 
existing method, it was shown that the new dimension reduction based method reduced the 
computational loads significantly. Furthermore, we discussed DOA identifiability issues for such arrays 
and derived a relevant Cramer-Rao bound. Computer simulations were conducted to illustrate the 
effectivity of the proposed estimator. 
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INTRODUCTION 
 
Most existing direction of arrival (DOA) estimation 
methods employ scalar sensor arrays in which the output 
of each sensor is a scalar corresponding to, for example, 
the pressure in the acoustic case or a scalar function of 
the electric filed in the electromagnetic case. Whereas it 
is well known that the spatial electromagnetic signal is a 
vector signal, complete information of electromagnetic 
field is a six-dimensional complex vector; and the main 
advantage of the vector sensor array is that it makes use 
of all available electromagnetic information and should 
outperform the scalar sensor array in accuracy of DOA 
estimation. So the problem of estimating electromagnetic 
wave parameters using antenna arrays with diversely 
polarized elements is important in many applications. In 
addition to DOA (Nehorai and Paldi, 1994), using the 
polarization information in waveforms about targets can 
improve the performance of active sensing systems such 
as radar (Sowelam and Tewfik, 2000; Hurtado et al., 
2009) and increase the capacity of communication 
systems. In radar,  polarimetric  scattering  information  is  
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useful for discriminating the targets' features such as 
geometrical structure, shape, orientation and so on. 
Besides, we know the problem of DOA estimation using 
partly calibrated sensor arrays is important in several 
practical applications, such as the situation where 
subarray-based sparse arrays are used (Zoltowski and 
Wong, 2000; Pesavento et al., 2001). In this condition, 
the aperture of the whole array is much larger than the 
one of each subarray. Therefore, each subarray can be 
assumed to be well calibrated but the calibration of the 
whole array may be poor due to completely unknown or 
imprecisely known inter-subarray displacements, 
imperfect time synchronization of different subarrays, 
unknown channel mismatches between some subarrays 
that are located far away from each other, or a 
combination of the above mentioned effects. The 
conventional subspace algorithm such as multiple signal 
classification (MUSIC) cannot be used in the above 
mentioned situations as they are very sensitive even to 
very small array manifold model errors (Friedlander, 
1990). Generally, full offline calibration of the whole array 
is an existing solution to the aforementioned problem, 
which may be an extremely complicated task (Porat and 
Friedlander,  1997).  Several  self-calibration  of  solutions 
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(Rockah and Schultheiss, 1987; Friedlander and Weiss, 
1991; Viberg and Swindlehurst, 1994; Ng and See, 1996; 
Flanagan and Bell, 2000) have also been proposed to 
enable joint calibration of the array and estimation of the 
source DOAs, but their computational complexity are very 
high, and performance will be severely degenerated in 
the case of large sensor position errors (Flanagan and 
Bell, 2000). Besides, these methods cannot be employed 
when the time synchronization of subarrays is imperfect 
or the channel mismatches are unknown. 

A particular solution to the problem of DOA estimation 
in partly calibrated arrays has been recently proposed 
(Pesavento et al., 2001, 2002). This method is referred to 
as the rank reduction estimator (RARE) and developed 
solely for the specific case of unknown inter-subarray 
displacements. It enjoys simple implementation and 
desired performance which is close to the corresponding 
Cramer-Rao bound (CRB). Whereas practical applica-
tions of these approaches are restricted by the array 
geometry requirement that each subarray must belong to 
the particular class of identically oriented linear array with 
inter-element spacing that are integer multiples of a 
certain shortest baseline. To overcome these restrictions, 
the authors (See and Gershman, 2004) developed a 
general signal model that is applicable to subarray-based 
partly calibrated sensor arrays whose subarray geometry 
is arbitrary, and propose a subspace-based approach to 
DOA estimation in partially calibrated arrays, that can be 
viewed as a spectral search-based extension of the 
original root-RARE algorithm of Pesavento et al. (2001, 
2002). However, this MUSIC-like algorithm called G-
RARE only suits for scalar arrays. To achieve better 
resolution and accuracy performance by using large 
aperture, See and Nehorai (2003) extended the applica-
tion of G-RARE from a scalar sensor array to distributed 
electromagnetic component sensor array (DEMCA), whereas it 
suffers the problem of high computation complexity. 

Recently, some new position estimation methods (Chen 
et al., 2008; Chen et al., 2010) for wireless sensor 
network will be used to further improve the estimation 
performance in our future study. Here, we proposed a 
dimension reduction based subspace approach to 
achieve better estimation performance of multiple 
sources using partially calibrated DEMCAs. Spectral cost 
function was addressed using subspace orthogonal firstly. 
Then, we introduced a simplified 2-dimension spectral 
cost function by combining multidimensional parameter, 
which reduced the computational loads significantly 
without degenerating performance. Moreover, to verify 
the performance of our proposed method, CRB was 
computed and the existing method was compared with 
ours, simulation results illustrated the validity of the 
proposed method finally.  
 
 
MEASUREMENT MODEL 
 
The      measurement      model     of     a     compact     6-dimension  

 
 
 
 
electromagnetic vector sensor (EMVS) is given by Nehorai and 
Paldi (1994), 
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where 3I is the third order identity matrix, and 
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The vector 1 2 3[u ,u ,u ] = [cos cos ,  sin cos ,  sin ]Tθ φ θ φ φ=u  
indicates the unit direction vector from sensor to source, the matrix 
V  is given by 
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the wave polarization is defined by  
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Where θ , φ , α  and β are the azimuth, elevation, polarized 

ellipse’s orientation and eccentricity angles respectively, ( )E te  and 

( )H te  are the noise component of electric and magnetic fields 
respectively. 
 
Assuming that the signal sources are narrowband, the 
measurement model of a DEMCA in multiple sources environment 
becomes (See and Nehorai, 1999) 
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 where ( ) ( ) ( )( , , , )k k k k kθ φ α β=�  denotes the direction and 

polarization information of the -thk  source signal. ( , )θ φΓΓΓΓ  is 

an N N×  ( N is the number of component sensors) diagonal matrix 

whose -thn  diagonal entry is given by [ ] 2 /( , )
T
nj

nn
e π λθ φ = uqΓΓΓΓ , for 

1,...,n N= .   This  matrix  provides  the  phase  shift   between  the 
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Figure 1. Distributed electromagnetic component sensor array. 

 
 
 
vector sensor centre and position nq  of the -thn  element of the 

vector sensor. ΩΩΩΩ  is an 6N ×  selection matrix with elements of 1 
or 0 to pick out a choice from 6 components of the electromagnetic 
vector sensor. For example, 6= IΩΩΩΩ when DEMCA is placed as 
shown in Figure 1.  

Unlike the compact EMVS, DEMCA generalizes the vector 
sensor arrays and allows the differential delay measurements 
resulting from diverse placement of the component sensors and 
electromagnetic field measurements to be jointly exploited in 
estimating the source parameters. Given both the complete 
electromagnetic and spatial information, better parameter 
estimation with a smaller aperture array can be expected over a 
wide frequency range as compared to either a vector sensor or a 
scalar array. In the following, the operators ( ) ,  ( )H T⋅ ⋅  and E{}⋅  
denote the Hermitian transpose, transpose, and statistical 
expectation respectively. The symbol diag 1 2{ , }z z  represents a 

diagonal matrix with diagonal entries 1 2,  z z  and blkdiag 1 2{ , }Z Z  

represents a block diagonal matrix with diagonal entries 1 2,  Z Z . 

Assume that an array is composed of L  DEMCA subarrays, the 
-thl DEMCA subarray is denoted as  

 

( ) ( , ) ( )l lP θ φ= ⋅a a� �
,                                                        (8) 

where 
2 /( , )l

T
ljP e π λθ φ = up /

 represents the phase of  the 

planewave arriving at the l -th DEMCA subarray at the position lp  

( 1,..., )l L= . Then, the steering vector of the array comprising L  
partially calibrated DEMCAs is given by 
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( ) ( ) ( ) ( )

1 2[ , ,..., ]k k k k T
Lh h h=h , lh  denotes the calibration errors due to 

inter subarray displacement error, receiver channel mismatch and 
sampling offsets among the subarrays. Then, we can model array 
snapshot compactly in matrix form  with  ( )Fa � ,  
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( ) ( ) ( ) ( ),   1,...,t t t t T= + =Y A S eΘΘΘΘ ,                                       (10) 
 
where (1) (2) ( )( ) [ ( ), ( ),..., ( )]K

F F FΘ =A a a a� � � ,
(1) (2) ( )[ , ,..., ]K= � � �ΘΘΘΘ , 1 2( ) [ ( ),  ( ),...,  ( )]Kt t t t=S s s s . And we 

make the following commonly used assumptions on the model (10):  
 
A: The source signal sequence { (1),  (2),...,  ( )}s s s T  is a sample 
from a temporally uncorrelated stationary (complex) Gaussian 

process with zero mean and ,E{ ( ) ( )}H
s m ns m s n R δ= , 

E{ ( ) ( )} 0Ts m s n =  (for all m  and n ), where ,m nδ  is the Kronecker 

delta. 
B: The noise ( )te  is (complex) Gaussian distributed with zero 

mean and 2
,E{ ( ) ( )}H

m nm n σ δ=e e I , (for all m  and n ).  

It is also assumed that the entries of ( )ts  and ( )te  are 

independent with each other. With ( )tY , the sample estimate of 
the array covariance matrix 
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is given by  
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Where E{ ( ) ( )}H

s t tS S�R  is the source covariance matrix, 2σ is 

the identical variance in each sensor. When 6K L< , the eigen-
decomposition of the matrices (11) and (12) can be expressed in 
the form 
 

H H
s s s N N N= +R E E E EΛ ΛΛ ΛΛ ΛΛ Λ ,                                                        (13) 
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where the K K×  diagonal matrices sΛΛΛΛ  and ˆ
sΛΛΛΛ  contain the K  

signal subspace eigenvalues of R and R̂  respectively, and the 

(6 ) (6 )L K L K− × −  diagonal matrices NΛΛΛΛ  and ˆ
NΛΛΛΛ  contain the 

6L K−  noise subspace eigenvalues of R  and R̂  respectively. In 

turn, sE and ˆ
sE  are 6L K×  matrices whose columns are the 

signal subspace eigenvectors corresponding to the K  largest 

eigenvalues of R  and R̂  respectively, while NE  and ˆ
NE  are 

6 (6 )L L K× −  matrices whose columns are the noise subspace 

eigenvectors corresponding to the 6L K−  smallest eigenvalues of 

R  and R̂  respectively. 
 
 
DOA ESTIMATION 
 
Now, we consider the well known spectral MUSIC algorithm which 
estimates the signal DOAs from the K  highest peaks of the 
following function (Zoltowski and Wong, 2000). 
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In the ideal case of exactly known R , the DOAs can be found from 
the equation 
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To find the K  highest peaks of (15), we have to use an exhaustive 
multidimensional search with respect to ,  ,  θ φ α  and β , which 
becomes totally impractical. To overcome this problem, inserting (9) 
into (15), we can rewrite the equation (15) as 
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Where ( )= w hg F Q  and ( , ) ( , )H H

N Nθ φ θ φ=C D E E D . From 
(17), it is obviously shown that the polarization information and error 
information are only contained in vector g , so the matrix C  is 
independent of polarization and error information. Besides, the 

sample matrix ˆ ˆ ˆ( , ) ( , )H H
N Nθ φ θ φC = D E E D  is used instead of C  

in practice. Therefore, the signal DOAs can be found from the K  
highest peaks of the following spectral function: 
 

1
m in

1
ˆ{ }

( )f
λ

=
C

�

,                                                                   (18) 
 
where min{}λ ⋅  is the operator that returns the smallest eigenvalue 
of a Hermitian matrix. 
 
We can still analyze this problem in aspect of reduction of rank (See 

and Gershman, 2004), in general, matrix Ĉ  is full rank if  
 

6L L K≤ − .                                                                          (19) 
 

Because the column rank of Ĉ  is not less than L , Therefore, (16) 

can be true only if the matrix Ĉ  drops rank so that  
 

ˆra n k ( ) L<C                                                                         (20) 
 

So the determinant of Ĉ  as well as its smallest eigenvalue will tend 

to have a minimum when �  coincides with one of the signal 

directions 1{ }K
l k =� . Therefore, another alternative spectral function 

can be used 
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UNIQUENESS AND IDENTIFIABILITY 
 
Here, we show the uniqueness of the signal DOA estimates obtained 



 
 
 
 
from the rank reduction criterion (18) in the case T → ∞  and the 
identifiability issues. Define a parameter lγ  first, if the manifold of 

the l -th subarray is unambiguous, 1lγ = , otherwise, 0lγ = . 
According to See and Gershman (2004), if the following condition is 
satisfied: 
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< −�
,                                                              (22) 

 
where lM  is the sensor number of the l -th subarray, and the true 

parameter h  is fixed in (16). Then the signal DOAs 1{( , )}K
k k kθ φ =  is 

the whole set of possible solution to (16). Moreover, if 
ˆrank( ) L<C , (16) holds true. Obviously our proposed method 

satisfies all of the conditions mentioned previously. 
 
  
CRAMER RAO BOUND  
 
Here, we derive the stochastic CRB of direction finding problem in 
subarray-based partly calibrated arrays. Besides, this bound 
regards the inter-subarray parameters to be unknown. To derive the 
CRB expressions conveniently, we rewrite the steering vector of the 
array comprising L partially calibrated DEMCAs as follows (See and 
Nehorai, 2003), 
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Alternatively, the expression (23) can also be rewritten as (See and 
Nehorai, 2003) 
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Here, using (23), the snapshot model (10) can be rewritten as 
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From (25), it is clear that each  vector  ( )kh   is  identifiable  up  to  a 
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scaling constant. To avoid scaling ambiguity in the computation of 
the CRB, we fix the first elements of the vectors 

( )kh ( 1,  ... , )k K= , that is, assume that they are known. Let us 

introduce the following 2 1KL ×  vector: 
 

2 2[ , , . . ., , , . . . , ]T T T T T T
L L�η θ ξ ξ ς ςη θ ξ ξ ς ςη θ ξ ξ ς ςη θ ξ ξ ς ς ,                                (26) 

 
where  
 

1, ,[Re{ },...,Re{ }]T
l l K lh h�ξξξξ , 1, ,[Im{ },..., Im{ }]T

l l K lh h�ςςςς . 

 
Let the snapshots satisfy the following stochastic model 
 

( ) {0, }st �s RN{
,                                                        (27) 

 
The unknown parameters of the problem include the elements of 
the vectorη , the noise variance 2σ , and the parameters of the 

source covariance matrix sR . Concentrating the problem with 
respect to the parameters of the source covariance matrix and the 
noise variance, we have the following equation for the entries of the 
2 2KL KL×  CRB matrix (Nehorai and Paldi, 1994), 
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K K×  matrix, tr( )⋅ denotes matrix trace operator, and 
1( )( ( ) ( )) ( )H H

C
−Π = − A A A AI Θ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θ  is the 6 6L L×  

orthogonal projection matrix. Here, for notational simplicity, the 
explicit dependence on ΘΘΘΘ  will be occasionally omitted. Thus, 
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(for 1,  ... , )i K=
, and ke  is the 1K ×  vector with one in the 

-thk position and zeros elsewhere. Then we can obtain the CRB 
matrix using (28) easily. 
 
 
SIMULATION RESULTS AND DISCUSSION 
 
Here, we presented several experimental results for our 
proposed   scheme   using   a   partially  calibrated   array 
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Figure 2. Normalized beam pattern using our proposed approach. 

 
 
 
composed of multiple DEMCA subarrays. First we 
showed our simulation results by plotting spatial spectra 
of signal sources, and then we compared the 
performance obtained by our approach with that of the 
existing method (See and Nehorai, 2003) and CRB under 
different signal noise ratio (SNR). In order to satisfy the 
assumptions for the CRB, we choose an operating point 
where our estimate is unbiased. Throughout our 
simulations, we assume two uncorrelated sources 
impinging on the partially calibrated array of two DEMCA 
subarrays from the DOAs (1) [20 ,40 ,45 , 5 ]= −	 	 	 	ΘΘΘΘ  

and (2) [50 , 30 ,60 , 60 ]= − −	 	 	 	ΘΘΘΘ . Each subarray is made 
of x , y  and z  electric and magnetic component sensors 
arranged as a uniformly spaced circular array of half 
wavelength intersensor spacing. The second subarray is 
displaced from the first array by [5 ,  5 ,  0]λ λ , where λ  is 
the signal’s wavelength. All results are averaged over 
1000 Monte Carlo simulations, and 100T =  snapshots 
are taken in each simulation example. For simplicity, we 
assume that all signal sources are of equal power 2

Sσ , 

and input SNR is defined as 10 2 2
10log ( / )S nσ σ . 

In the first simulation, the SNR is fixed at 30 dB and 
100 independent snapshots are used to estimate the 
array covariance matrix. As shown in Figures 2 and 3, our 
proposed method was able to resolve and estimate the 
DOAs of the signals as the MUSIC-like algorithm 
proposed by See and Nehorai (2003). In particular, our 
proposed method determined the DOA accurately as 
indicted by the contour plot in Figure 2, whereas the 
proposed MUSIC-like algorithm uses iterative  manner  to  

find ŵ  and ĥ  that minimize the cost function 
 

ˆ ˆ( , ) ( , , ) ( , , )H H H
N NJ θ φ θ φ θ φ= w wh hE EΦ ΦΦ ΦΦ ΦΦ Φ                            (29) 

 
ˆ ˆ( , , ) ( , , )H H H

N Nθ φ θ φ= w wh hG E E G .                          (30)  
 
Moreover, it requires two eigenvalue decompositions in 
each iteration, whereas our proposed method only need 
one eigen value decomposition to estimate DOAs of the 
signals, so the computational complexity of the MUSIC- 
like algorithm (See and Nehorai, 2003) is much higher 
than our proposed method, especially for many DEMCA 
subarrays. To compare the performance obtained by our 
approach with CRB under different SNR, we defined the 
root mean square error (RMSE) of the DOA estimates 
from 1000 Monte Carlo trials as 
 

1000
2 2

1 1

ˆ ˆRMSE (( ( ) ) ( ( ) ) ) (1000 )
sN

k k k k s
n k

n n Nθ θ φ φ
= =

= − + −��
,           (31)  

 
where ˆ ( )k nθ , ˆ ( )k nφ  are the estimations of kθ  and kφ  for 
the n -th Monte Carlo trial respectively , and sN  is the 
number of all the signals. 

In the second simulation, we considered the same 
scenario mentioned as the first simulation. Figure 4 
showed the RMSE of the DOA estimates versus input 
SNR, and the simulation results illustrated that the 
proposed spectral estimators outperformed the MUSIC-
like algorithm, especially for low SNR case. And the 
RMSE estimators of  our  signals,  except  low  SNR,  can 
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Figure 3. Normalized beam pattern with the method proposed in 
Sowelam and Tewfik (2000). 

 
 
 

 
 
Figure 4. RMSE of the DOA estimates versus input SNR. 

 
 
 
meet CRB. From all our examples, it showed that the 
proposed spectral estimators can achieve high estimation 
performance of multiple sources, using a partially 
calibrated array composed of multiple DEMCA subarrays. 
Moreover, low computational complexity was another 
advantage of the proposed method against the MUSIC-
like algorithm (See and Nehorai, 2003). 
 
 
CONCLUSION 
 
In this paper, the problem of DOA estimations of 
electromagnetic sources using a partially calibrated array 

comprising multiple DEMCA subarrays was addressed 
under the assumption that all subarrays were well 
calibrated, but there were imperfections between different 
subarrays. An efficient dimension reduction based DOA 
estimation approach was proposed, which was suit for 
partially calibrated polarized array and array imperfection. 
We derived the CRB of the partially calibrated array, and 
presented numerical examples with combinative effect of 
various types of imperfections.  

Finally, the simulation results illustrated the proposed 
method had significant accuracy and low computational 
complexity advantages over the existing method (See 
and Nehorai, 2003). 
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