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Entropy generation rate in a variable viscosity liquid flowing steadily through two concentric cylindrical 
pipes with convective cooling at the pipe surface, are studied using the second law analysis. The outer 
system is assumed to exchange heat with the ambient following Newton’s cooling law, and the fluid 
viscosity model varies as an inverse linear function of temperature. The resulting equations and the 
boundary conditions are solved using the fourth Order Runge-Kutta scheme and an efficient shooting 
technique. Numerical expressions for fluid velocity and temperature are derived and utilised to obtain 
expressions for volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan 
number in the flow field. 
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INTRODUCTION 
 
Heat transfer inside concentric pipes has many significant 
engineering applications. These ranges from electronic 
packages, industrial heat exchanges to petroleum 
industries (Sheng et al., 2010). Furthermore, studies 
related to viscous fluid with temperature dependent 
properties are of great importance in industries, such as, 
food processing, coating and polymer processing 
industries (Macosko, 1994; Schlichting, 2000). In 
industrial systems, fluid can be subjected to extreme 
conditions such as high temperature, pressure and shear 
rate. External heating, such as, the ambient temperature 
and high shear rates can lead to a high temperature 
being generated in the fluid. This may have a significant 
effect on the fluid properties. Fluid used in industries such 
as polymer fluids have a viscosity that varies rapidly with 
temperature and may give rise to strong feedback effects, 
which can lead to significant changes in the flow structure 
of the fluid (Sahin, 1999; Tasmin et al., 2002). Due to the 
strong  coupling  effect  between  the  Navier-Stokes  and  
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energy equations, viscous heating also plays an 
important role in fluid with strong temperature 
dependence. Elbashbeshy and Bazid (2000) investigated 
the effect of temperature dependent viscosity on heat 
transfer over a moving surface. In their investigation, the 
fluid viscosity model varies as an inverse linear function 
of temperature. Costa et al. (2003) applied the 
temperature dependent viscosity model to study magma 
flows. The effects of temperature dependent fluid 
viscosity on heat transfer and thermal stability of reactive 
flow in a cylindrical pipe with isothermal wall was reported 
in Makinde (2008). 
Thermodynamic irreversibility in any fluid flow process 

can be quantified through entropy analysis. The first law 
of thermodynamics is simply an expression of the 
conservation of energy principle. The second law of 
thermodynamics states that all real processes are 
irreversible. Entropy generation is a measure of the 
account of irreversibility associated with the real 
processes (Mirzazadeh et al., 2008; Tshehla et al., 2010). 
When entropy generation takes place, the quality of 
energy (that is, exergy) decreases (Ibanez et al., 2003; 
Mikinde, 2008). In order to preserve the quality of  energy 
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Figure 1. Geometry of the problem. 

 
 
 
in a fluid flow process or at least to reduce the entropy 
generation, it is important to study the distribution of the 
entropy generation within the fluid volume, (Makinde et 
al., 2010; Sheng et al., 2010). The optimal design for any 
thermal system can be achieved by minimizing entropy 
generation in the systems. Entropy generation in thermal 
engineering systems destroys available work and thus 
reduces its efficiency. 

The study of entropy generation in conductive and 
convective heat transfer processes has assumed 
considerable importance since the pioneering work of 
Bejan (1995) and his subsequent book on the subject 
Bejan (1996). Since then numerous papers have studied 
entropy generation in heat transfer processes (Sahin, 
1999; Tasnim et al., 2002; Tshehla et al., 2010). 
Recently, the thermodynamics second law characteristics 
for variable viscosity channel flow with convective cooling 
at the walls are discussed by Makinde et al. (2008). It 
seems to the authors’ knowledge that the effect of 
convective cooling on the entropy generation rate in a 
variable viscosity flow through two cylindrical pipes has 
not been investigated fully. Sheng et al. (2010) 
investigated a natural convection and entropy generation 
in a vertical concentric annular space. Mirzazadeh et al. 
(2008) investigated entropy analysis for non-linear visco-
elastic fluid in concentric rotating cylinders. The results 
show that entropy generation number increases with 
increasing Brinkman number. 

The scarcity of investigations, such as the problem of 
heat transfer and entropy generation in the flow of a 
variable viscosity fluid through two concentric pipes with 
convective cooling has motivated this study. The work in 
Tshehla et al. (2010) is extended to consider the flow in 
two concentric pipes. 
 
 
MATHEMATICAL MODEL 
  

Figure 1 presents a schematic diagram of the fluid flow and heat 
transfer domains. The radius of the inner cylinder is denoted a and  

 
 
 
 
the radius of the outer cylinder is denoted b. Flow is considered to 

be steady in the z -direction and length L under the action of a 
constant pressure gradient, viscous dissipation, convective cooling 
at the outer pipe surface. It is assumed that the pipes are long 
enough to neglect both the entrance and exit effects. The fluid is 

incompressible and the temperature dependent viscosity ( µ ) can 

be expressed as (Elbashy et al., 2000; Tasnim et al., 2002): 
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Where, µ0 is the fluid dynamic viscosity at the ambient temperature 
Ta. 
 
Under these conditions the continuity, momentum and energy 
equations governing the problem in dimensionless form may be 
written as (Tshehla et al., 2010);  
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Where, 
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The following non-dimensional quantities were employed in 
Equations 2 to 6: 
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Where, ρ is the fluid density, k is the thermal conductivity, T is the 
fluid temperature, T0 is the inner pipe surface temperature, U is the 

velocity scale, α is the viscosity variation parameter, u  is the axial 

velocity, v  is  the normal velocity, cp is the specific heat at 

constant pressure, P  is the pressure, Pr is the Prandtl number, Br 
is the Brinkman number, Bi is the Biot number, h is the heat transfer 

coefficient, Re is the Reynolds number, x  and y are distances 

measured in streamwise and normal direction, respectively. Since 
the pipes are narrow and the aspect ratio 0<ε<<1, the lubrication 
approximation based on an asymptotic simplification of the 
governing Equations 2 – 6, is invoked and we obtain, 
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Where )1(1 Tαµ +=  and zPG ∂−∂= /  is the constant 

axial pressure gradient. The corresponding boundaries conditions 
at the inner pipe surface and the outer pipe surface are the usual 
no slip condition for the fluid velocity. However, the outer pipe 
surface exchanges heat with the ambient, following the Newton’s 
cooling law and we obtain: 
 
u = 0, T = 1 at r = 1                               11 
 
And the regularity of the solution along the pipe centreline, that is, 
                                    

u = 0, BiT
dr

dT
−= , at r =γ,                                            12 

 

Where, γ > 1. 
 
 
Solution method 

 
The resulting Equations 8 and 10 cannot be solved analytically. 
These set of equations are combined with the boundary conditions, 
Equations 11 and 12, must be solved numerically by applying the 
Runge-Kutta fourth-order integration scheme coupled with shooting 
iteration technique. This basically involves transforming the 
governing boundary valued problem into a system of first order 
differential equations and then integrated numerically. The iterative 
process continues until the resulting initial valued problem at a 

given boundary conditions r = γ are satisfied.   
 
 
Entropy analysis 

 
The theory of entropy production goes back to the work of Clausius 
and Kelvin’s (Drost and Zaworski, 1988) on the irreversible aspects 
of the second law of thermodynamics. Thereafter, several authors 
have generalised the theory of entropy production to various aspect 
of engineering systems. However, the entropy production resulting 
from combined effects of fluid friction and temperature differences 
has remained untreated by classical thermodynamics, which 
motivates many researchers to conduct analyses of fundamental 
and applied engineering problems based on second law analysis. 
The general equation for the entropy generation per unit volume is 
given by Bejan (1995, 1996), Makinde et al. (2010), Sahin (1999) 
and Tasnim et al. (2002): 
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The first term in Equation 13, is the irreversibility due to heat 
transfer  and  the  second  term  is  the  entropy  generation  due  to 
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viscous dissipation. Equation 13 can be easily integrated from  

ar =  to br =  to give the total entropy generated in the pipe 

flow as follows. 
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Using Equations 13 and 14, the entropy generation number and 
total entropy generated is expressed in dimensionless form as, 
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In Equation 15, the first term can be assigned as N1 and the second 
term appears due to viscous dissipation as N2, that is; 
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In order to have an idea whether fluid friction dominates over heat 
transfer irreversibility or vice-versa, Bejan (1996) defined the 

irreversibility distribution ratio as Φ = N2/N1.  Heat transfer 

dominates for 0 ≤ Φ < 1 and fluid friction dominates when Φ > 1. 
The contribution of both heat transfer and fluid friction to entropy 

generation are equal when Φ = 1. In many engineering designs and 
energy optimisation problems, the contribution of heat transfer 
entropy, N1, to overall entropy generation rate, Ns, is needed. As an 
alternative to irreversibility parameter, the Bejan number (Be) is 
defined as; 
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Clearly, the Bejan number ranges from 0 to 1. Be = 0, is the limit 
where the irreversibility is dominated by fluid friction effects and Be 
= 1 corresponds to the limit where the irreversibility due to heat 
transfer by virtue of finite temperature differences dominates. The 
contribution of both heat transfer and fluid friction to entropy 
generation are equal when Be = 1/2. The expressions for Equations 
13 - 18 can be obtained using computer algebra packages such as 
MAPLE, MATLAB or MATEMATICA. 

 
 
RESULTS AND DISCUSSION  
 
In order to study the influence of all parameters involved 
in the present problem on the flow and thermal field along 
with entropy generation characteristics, a selected set of 
graphical results are presented in Figures 2 - 13. 
Moreover, it is noteworthy that a positive increase in the 

parameter value of α indicates a decrease in the fluid 
viscosity. The convective cooling in the flow system is 
enhanced by increasing the Biot number (Bi).   
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Figure 2. Effect of increasing the gap between the concentric pipes on velocity 

profiles for α= 0.1, Br = 1, Bi= 1, G=1. 
 
 
 

 
 

Figure 3. Effect of increasing convective cooling on velocity profiles for α= 0.1, 

Br = 1, γ = 2, G=1. 
 
 

 

 
 
Figure 4. Effect of decreasing in fluid viscosity on velocity profiles for Bi= 1, 

Br = 1, γ = 2, G=1. 
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Figure 5. Effect of increasing the gap between the concentric pipes on 

temperature profiles for α= 0.1, Br = 1, Bi= 1, G=1. 

 
 
 

 
 
Figure 6. Effect of decreasing in fluid viscosity on temperature profiles for Bi= 1, 

Br = 1, γ = 2, G=1. 
 
 

 

 
 

Figure 7. Effect of viscous dissipation on temperature profiles for Bi= 1, α = 0.1, 

γ = 2, G =1. 
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Figure 8. Effect of increasing convective cooling on temperature profiles for α= 

0.1, Br = 1, γ = 2, G=1. 
 
 

 

 
 
Figure 9. Effect of increasing the gap between the concentric pipes on entropy 

generation rate for α= 0.1, Br = 1, Bi= 0.1, G=1. 
 
 
 

 
 
Figure 10. Effect of decreasing in fluid viscosity on entropy generation rate for 

Bi= 0.1, Br = 1, γ = 2, G=1. 
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Figure 11. Effect of viscous dissipation on entropy generation rate for Bi= 0.1, α = 0.1, γ 

= 2, G =1. 
 
 
 

 
 

Figure 12. Effect of increasing convective cooling on entropy generation rate for α= 

0.1, Br = 1, γ = 2, G=1. 
 
 
 

 
 
Figure 13. Bejan number for different values of embedded parameters.  
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Velocity and temperature profiles 
 
Figures 2-4, shows the axial velocity distributions for 

increasing values of γ, Bi and α.  The velocity profile is 
parabolic and increases with an increase in the gap 
between the two concentric pipes (Figure 2). In Figure 3, 
we observed that an increase in the Biot number (Bi) due 
to convective cooling causes a decrease in the velocity 
profile. The velocity distribution for increasing values of α 
is shown in Figure 4. It is interesting to note that the fluid 
velocity profile increases as its viscosity decreases. This 
can be attributed to the fact that the fluid has becomes 
lighter and then flow faster. A comparison of the effects of 
increasing values of Bi and α on the velocity profiles 
shows perfect agreements with the earlier observation of 
Makinde (2008) and Tshehla et al. (2010). Figures 2-4, 
shows the axial velocity distributions for increasing values 

of γ, Bi and α.  The velocity profile is parabolic and 
increases with an increase in the gap between the two 
concentric pipes (see Fig.2). In Fig. 3, we observed that 
an increase in the Biot number (Bi) due to convective 
cooling causes a decrease in the velocity profile. The 
velocity distribution for increasing values of α is shown in 
figure 4. It is interesting to note that the fluid velocity 
profile increases as its viscosity decreases. This can be 
attributed to the fact that the fluid has becomes lighter 
and then flow faster. A comparison of the effects of 
increasing values of Bi and α on the velocity profiles 
shows perfect agreements with the earlier observation of 
Makinde (2008) and Tshehla et al. (2010).  
  
 
Entropy generation rate 
 
In Figures 9-12, the entropy generation rates in the 
transverse direction for various parametric values are 
illustrated. It is noteworthy that entropy generation rate is 
at the highest in the region around the inner pipe surface 
and lowest at the outer pipe surface. We observed that 
the entropy generation rate increases as the fluid 
viscosity decreases. Similar trend is observed with an 
increase in viscous heating (Br) and the gap between the 
two concentric pipes. This is in perfect agreement with 
the entropy generation results reported by Tasnim and 
Mahmud (2002) and Mirzazadeh et al. (2008). In their 
papers they observed that entropy generation number 
increases by increasing group parameter which depends 
strongly on the Brinkmann number (Br) and the 
temperature difference. Moreover, increasing values of 
Biot number (Bi) due to a convective cooling result to a 
decrease in entropy generation rate. 
 
 
Bejan number 
 
Figure 13 illustrate the Bejan (Be) number. It was 
observed that the Bejan number is 1.0  for  all  parameter  

 
 
 
 
values. This implies that the heat transfer irreversibility 
dominates the fluid friction irreversibility in the flow 
system.  
 
 
Conclusions 
 
Mathematical analysis has been developed for velocity, 
temperature and entropy generation number in a steady 
flow of a variable viscosity fluid between two concentric 
pipes under the action of a constant pressure gradient. 
We observed that both the fluid velocity and temperature 

increase with increasing values of γ, α and Br, and 
decreases with increasing values of Biot number, Bi. The 
inner pipe surface act as a strong concentrator of 
irreversibility due to high temperature gradients. A 

decrease in the parameter values of of γ, α, Br will reduce 
the entropy generation in the flow field. 
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