Full Length Research Paper

A non-polynomial spline method for solving linear fourth-order boundary-value problems

Omotayo A. Taiwo ${ }^{1 *}$ and Oladotun M. Ogunlaran ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Ilorin, Ilorin, Nigeria.
${ }^{2}$ Department of Mathematics and Statistics, Faculty of Science and Science Education, Bowen University, Iwo, Nigeria.

Accepted 7 March, 2011
In this paper, we use a non-polynomial spline method to develop a numerical technique for solving linear fourth-order boundary-value problems which are first reduced to a system of second-order boundary-value problems. Three numerical examples are considered to demonstrate the usefulness of the method and to show that the method converges with sufficient accuracy to the exact solutions.

Key words: Cubic spline, non polynomial spline, boundary-value problems, system of equations.

INTRODUCTION

We use a non-polynomial spline approximation to develop a new method for obtaining smooth approximations to the solutions of fourth-order boundaryvalue problems of the form:

$$
\begin{equation*}
u^{i v}(x)+a_{1}(x) u^{\prime \prime \prime}(x)+a_{2}(x) u^{\prime \prime}(x)+a_{3}(x) u^{\prime}(x)+a_{4}(x) u(x)=f(x), a \leq x \leq b \tag{1}
\end{equation*}
$$

along with the boundary conditions

$$
\left.\begin{array}{ll}
u(a)=\alpha_{0}, & u(b)=\alpha_{1} \\
u^{\prime \prime}(a)=\beta_{0}, & u^{\prime \prime}(b)=\beta_{1} \tag{2}
\end{array}\right\}
$$

Where $\alpha_{i}, \beta_{i}, i=0,1$ are arbitrary finite real constants and $\quad a_{1}(x), a_{2}(x), a_{3}(x), a_{4}(x)$ and $f(x) \quad$ are continuous on $[a, b]$. The analytical solution of problem (1) with boundary conditions (2) cannot be determined for any arbitrary choice of $a_{1}(x), a_{2}(x), a_{3}(x), a_{4}(x)$ and $f(x)$. We therefore employ numerical methods for obtaining approximate solution to the problem. Papamichael et al. (1981) considered and developed a cubic-spline method for the solution of the following fourth-order boundary-value

[^0]problem:
\[

$$
\begin{align*}
& y^{i v}(x)+f(x) y(x)=g(x), \quad a \leq x \leq b \tag{3}\\
& y(a)=\alpha_{0}, \quad y(b)=\alpha_{1} \tag{4}\\
& y^{\prime}(a)=\beta_{0}, \quad y^{\prime}(b)=\beta_{1} \tag{5}
\end{align*}
$$
\]

where $\alpha_{i}, \beta_{i}, i=0,1$ are finite real constants and the functions $f(x)$ and $g(x)$ are continuous in $[a, b]$.

Alberg and lto (1975) used a collocation method for obtaining the solution of second-order boundary-value problems. Usmani (1978) presented three finitedifference techniques, of order 2,4 and 6 respectively, for the solution of (3) to (5). Siddiqi et al. (2008) used quintic spline to solve the same boundary-value problems. Taiwo et al. (2008) derived polynomial cubic-spline methods to solve (1) and (2). Usmani (1980) derived cubic-, quarticand sextic-spline methods for the numerical solution of the non-linear second-order boundary-value problems. Sixth-degree B-spline was developed for the solution of fifth-order boundary-value problems by Caglar et al. (1999). Al-Said (2008) and Rashidinia et al. (2007) derived quadratic- and cubic-spline techniques for the solution of fourth-order obstacle problems, respectively; while Siraj-ul-Islam et al. (2006) presented a quadratic non-polynomial spline method for the solution of secondorder obstacle problems.

In order to solve (1) with the associated boundary conditions (2), we reduce (1) to a system of second-order differential equations as:

$$
\left.\begin{array}{l}
v^{\prime \prime}(x)+a_{1}(x) v^{\prime}(x)+a_{2}(x) v(x)+a_{3}(x) u^{\prime}(x)+a_{4}(x) u(x)=f(x) \\
u^{\prime \prime}(x)-v(x)=0 \tag{6}
\end{array}\right\}
$$

with the boundary conditions

$$
\left.\begin{array}{ll}
u(a)=\alpha_{0}, & u(b)=\alpha_{1} \tag{7}\\
v(a)=\beta_{0}, & v(b)=\beta_{1}
\end{array}\right\}
$$

DESCRIPTION OF NON-POLYNOMIAL SPLINE METHOD

To derive the non-polynomial spline approximation S to (6) with boundary conditions (7), we discretize the interval $[a, b]$ using equally
spaced knots $x_{i}=a+i h, i=0,1, \ldots, n . x_{0}=a, x_{n}=b$ and $h=(b-a) / n$ where n is any arbitrary positive integer.
A function S of class $C^{2}[a, b]$, which interpolates $u(x)$ at the mesh points $x_{i}, i=0,1, \ldots, n$ depends on a parameter k, and reduces to the normal cubic spline $S(x)$ in $[a, b]$ as $k \rightarrow 0$, is termed as non-polynomial spline function.

For each segment $\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, n-1$, the nonpolynomial spline $S_{i}(x)$ has the form
$S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i} \sin k\left(x-x_{i}\right)+d_{i} \cos k\left(x-x_{i}\right), i=0,1, \ldots, n-1$
where a_{i}, b_{i}, c_{i} and d_{i} are constants and k is a free parameter.

Let u_{i} be an approximation to $u\left(x_{i}\right)$, obtained by the segment $S_{i}(x)$ of the mixed spline function passing through the points $\left(x_{i}, u_{i}\right)$ and $\left(x_{i+1}, u_{i+1}\right) . S_{i}(x)$ is required to satisfy the interpolatory conditions at x_{i} and x_{i+1}, the boundary conditions (7) and the continuity condition of first derivatives at the common nodes $\left(x_{i}, u_{i}\right)$.

In order to obtain the coefficients in expression (8) in terms of u_{i}, u_{i+1}, M_{i} and M_{i+1}, we define:

$$
\begin{equation*}
S_{i}\left(x_{i}\right)=u_{i}, \quad S_{i}\left(x_{i+1}\right)=u_{i+1}, \quad S_{i}^{\prime \prime}\left(x_{i}\right)=M_{i}, \quad S_{i}^{\prime \prime}\left(x_{i+1}\right)=M_{i+1} \tag{9}
\end{equation*}
$$

$$
\left.\begin{array}{l}
a_{i}=u_{i}+\frac{M_{i}}{k^{2}}, b_{i}=\frac{1}{h}\left(u_{i+1}-u_{i}\right)+\frac{1}{k \theta}\left(M_{i+1}-M_{i}\right) \\
c_{i}=\frac{1}{k^{2} \sin \theta}\left(M_{i} \cos \theta-M_{i+1}\right), \quad d_{i}=\frac{-M_{i}}{k^{2}}
\end{array}\right\}
$$

where $\theta=k h, i=0,1, \ldots, n-1$.

Using the continuity condition of the first derivative at $\left(x_{i}, u_{i}\right)$, that is $S_{i-1}^{\prime}\left(x_{i}\right)=S_{i}^{\prime}\left(x_{i}\right)$, we obtain the following consistency relation

$$
\begin{align*}
& \frac{1}{h^{2}}\left(u_{i-1}-2 u_{i}+u_{i+1}\right)=\left(\frac{1}{\theta \sin \theta}-\frac{1}{\theta^{2}}\right) M_{i-1}+2\left(\frac{1}{\theta^{2}}-\frac{\cos \theta}{\theta \sin \theta}\right) M_{i}+\left(\frac{1}{\theta \sin \theta}-\frac{1}{\theta^{2}}\right) M_{i+1} \tag{11}\\
& i=1,2, \ldots, n-1 .
\end{align*}
$$

For the purpose of simplicity, we write (11) as

$$
\frac{1}{h^{2}}\left(u_{i-1}-2 u_{i}+u_{i+1}\right)=\alpha M_{i-1}+2 \beta M_{i}+\alpha M_{i+1}
$$

W here $\alpha=\frac{1}{\theta \sin \theta}-\frac{1}{\theta^{2}}, \beta=\frac{1}{\theta^{2}}-\frac{\cos \theta}{\theta \sin \theta}$

In a similar manner, we get for $v(x)$

$$
\begin{equation*}
\frac{1}{h^{2}}\left(v_{i-1}-2 v_{i}+v_{i+1}\right)=\alpha N_{i-1}+2 \beta N_{i}+\alpha N_{i+1} \tag{12b}
\end{equation*}
$$

Now the corresponding truncation error associated with (12a) is
$\mathrm{T}=u\left(x_{i-1}\right)-2 u\left(x_{i}\right)+u\left(x_{i+1}\right)-h^{2}\left(\alpha u^{\prime \prime}\left(x_{i-1}\right)+2 \beta u^{\prime \prime}\left(x_{i}\right)+\alpha u^{\prime \prime}\left(x_{i+1}\right)\right)$
Applying Taylor's theorem and simplifying, we obtain

$$
\begin{align*}
\mathrm{T}= & h^{2}(1-2 \alpha-2 \beta) u_{i}^{\prime \prime}+\frac{h^{4}}{12}(1-12 \alpha) u_{i}^{\prime \nu}+\frac{h^{6}}{360}(1-30 \alpha) u_{i}^{v \prime}+\ldots \ldots \\
& i=1,2, \ldots, n . \tag{13}
\end{align*}
$$

Hence, for arbitrary choice of α and β satisfying the condition $1-2 \alpha-2 \beta=0$, implies that the method (12a) is second-order convergent. The method will be fourth-order convergent if $1-2 \alpha-2 \beta=0$ and $\alpha=1 / 12$.

APPLICATION OF NON-POLYNOMIAL SPLINE

To illustrate the application of the numerical method developed in the previous section, we discretize (6) at mesh points $\left(x_{i}, u_{i}\right)$ and $\left(x_{i}, v_{i}\right)$. So we have

$$
\left.\begin{array}{l}
v_{i}^{\prime \prime}+a_{1}\left(x_{i}\right) v_{i}^{\prime}+a_{2}\left(x_{i}\right) v_{i}+a_{3}\left(x_{i}\right) u_{i}^{\prime}+a_{4}\left(x_{i}\right) u_{i}=f\left(x_{i}\right) \\
u_{i}^{\prime \prime}-v_{i}=0 \tag{14}
\end{array}\right\}
$$

Substituting $M_{i}=u_{i}^{\prime \prime}$ and $N_{i}=v_{i}^{\prime \prime}$ in (14) and rewriting, we obtain,

$$
\left.\begin{array}{l}
N_{i}=f\left(x_{i}\right)-a_{1}\left(x_{i}\right) v_{i}^{\prime}-a_{2}\left(x_{i}\right) v_{i}-a_{3}\left(x_{i}\right) u_{i}^{\prime}-a_{4}\left(x_{i}\right) u_{i} \tag{15}\\
M_{i}=v_{i}
\end{array}\right\}
$$

We use the following $O\left(h^{2}\right)$ finite-difference approximations for the first derivative of v and u in Equation (15)

$$
\left.\begin{array}{lc}
u_{i}^{\prime} \cong \frac{u_{i+1}-u_{i-1}}{2 h}, & v_{i}^{\prime} \cong \frac{v_{i+1}-v_{i-1}}{2 h} \\
u_{i+1}^{\prime} \cong \frac{3 u_{i+1}-4 u_{i}+u_{i-1}}{2 h}, & v_{i+1}^{\prime} \cong \frac{3 v_{i+1}-4 v_{i}+v_{i-1}}{2 h} \tag{16}\\
u_{i-1}^{\prime} \cong \frac{-u_{i+1}+4 u_{i}-3 u_{i-1}}{2 h}, & v_{i-1}^{\prime} \cong \frac{-v_{i+1}+4 v_{i}-3 v_{i-1}}{2 h}
\end{array}\right\}
$$

Substituting (16) into (15), we obtain the following:

$$
\begin{align*}
& N_{i}=f\left(x_{i}\right)-a_{1}\left(x_{i}\right) \frac{v_{i+1}-v_{i-1}}{2 h}-a_{2}\left(x_{i}\right) v_{i}-a_{3}\left(x_{i}\right) \frac{u_{i+1}-u_{i-1}}{2 h}-a_{4}\left(x_{i}\right) u_{i} \tag{17}\\
& N_{i+1}=f\left(x_{i+1}\right)-a_{1}\left(x_{i+1}\right) \frac{3 v_{i+1}-4 v_{i}+v_{i-1}}{2 h}-a_{2}\left(x_{i+1}\right) v_{i+1} \\
& \tag{18}\\
& -a_{3}\left(x_{i+1}\right) \frac{3 u_{i+1}-4 u_{i}+u_{i-1}}{2 h}-a_{4}\left(x_{i+1}\right) u_{i+1} \\
& \begin{aligned}
N_{i-1} & =f\left(x_{i-1}\right)-a_{1}\left(x_{i-1}\right) \frac{-v_{i+1}+4 v_{i}-3 v_{i-1}}{2 h}-a_{2}\left(x_{i-1}\right) v_{i-1}
\end{aligned} \tag{19}\\
& \tag{20}\\
& M_{i}=v_{i} \tag{21}\\
& M_{i+1}=v_{i+1} \tag{22}\\
& M_{i-1}=v_{i-1}
\end{align*}
$$

Now, substituting Equations (17) to (19) into (12b) and simplifying, we obtain

$$
\begin{align*}
& \left(\frac{3 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-\alpha a_{2}\left(x_{i-1}\right)+\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{1}\left(x_{i+1}\right)}{2 h}-\frac{1}{h^{2}}\right) v_{i-1}+\left(\frac{-4 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-2 \beta a_{2}\left(x_{i}\right)+\frac{4 \alpha a_{1}\left(x_{i+1}\right)}{2 h}+\frac{2}{h^{2}}\right) v_{i} \\
& +\left(\frac{\alpha a_{1}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{1}\left(x_{i+1}\right)}{2 h}-\alpha a_{2}\left(x_{i+1}\right)-\frac{1}{h^{2}}\right) v_{i+1}+\left(\frac{3 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-\alpha a_{4}\left(x_{i-1}\right)+\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{3}\left(x_{i+1}\right)}{2 h}\right) u_{i-1} \\
& +\left(\frac{-4 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-2 \beta a_{4}\left(x_{i}\right)+\frac{4 \alpha a_{3}\left(x_{i+1}\right)}{2 h}\right) u_{i}+\left(\frac{\alpha a_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{3}\left(x_{i+1}\right)}{2 h}-\alpha a_{4}\left(x_{i+1}\right)\right) u_{i+1} \\
& \tag{23}\\
& =-\alpha f\left(x_{i-1}\right)-2 \beta f\left(x_{i}\right)-\alpha f\left(x_{i+1}\right)
\end{align*}
$$

For the purpose of simplicity, we rewrite (23) as

$$
\begin{align*}
& X_{1 i} v_{i-1}+Y_{1 i} v_{i}+Z_{1 i} v_{i+1}+X_{2 i} u_{i-1}+Y_{2 i} u_{i}+Z_{2 i} u_{i+1}=-\alpha f\left(x_{i-1}\right)-2 \beta f\left(x_{i}\right)-\alpha f\left(x_{i+1}\right) \tag{24}\\
& \quad i=1,2, \ldots, n-1
\end{align*}
$$

where

$$
\begin{aligned}
& X_{2 i}=\frac{3 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-\alpha a_{4}\left(x_{i-1}\right)+\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{3}\left(x_{i+1}\right)}{2 h} \\
& Y_{2 i}=\frac{-4 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-2 \beta a_{4}\left(x_{i}\right)+\frac{4 \alpha a_{3}\left(x_{i+1}\right)}{2 h} \\
& \text { and } \\
& Z_{2 i}=\frac{\alpha a_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{3}\left(x_{i+1}\right)}{2 h}-\alpha a_{4}\left(x_{i+1}\right)
\end{aligned}
$$

Similarly, substituting Equations (20) to (22) into (12a) and simplifying, we get

$$
\begin{aligned}
& X_{3 i} v_{i-1}+Y_{3 i} v_{i}+Z_{3 i} v_{i+1}+X_{4 i} u_{i-1}+Y_{4 i} u_{i}+Z_{4 i} u_{i+1}=0 \\
& \quad i=1,2, \ldots, n-1,
\end{aligned}
$$

Where $X_{3 i}=Z_{3 i}=\alpha, Y_{3 i}=2 \beta, X_{4 i}=Z_{4 i}=-\frac{1}{h^{2}}, Y_{4 i}=\frac{2}{h^{2}}$

Therefore, Equations (24), (25) and the boundary conditions (7) give a complete system of $2(n+1)$ linear equations in $2(n+1)$ unknowns.

NUMERICAL RESULTS

We solve three boundary-value problems using step lengths $h=1 / 5$ and $h=1 / 10$ to test the performance of the method developed. The numerical results are summarized in Tables 1 to 3 while, Figures 1 to 3 give additional information about the results.

Example 1

Consider the following problem.

$$
u^{i v}(x)-u(x)=0
$$

subject to the boundary conditions

$$
\left.\begin{array}{l}
u(0)=u^{\prime \prime}(0)=1 \\
u(1)=u^{\prime \prime}(1)=0
\end{array}\right\}
$$

with $u(x)=\frac{1}{2 \sinh (1)}\left(e^{1-x}-e^{x-1}\right)$ as its exact solution.

Example 2

$$
u^{i v}(x)-2 u^{\prime \prime}(x)+u(x)=-8 e^{x}
$$

subject to the boundary conditions

$$
\left.\begin{array}{l}
u(0)=u(1)=0 \\
u^{\prime \prime}(0)=0, \quad u^{\prime \prime}(1)=-4 e
\end{array}\right\}
$$

The exact solution is $u(x)=x(1-x) e^{x}$.

Example 3

$$
u^{i v}(x)-2 u^{\prime \prime \prime}(x)+u^{\prime \prime}(x)=0
$$

subject to the boundary conditions

$$
\left.\begin{array}{l}
u(0)=u^{\prime \prime}(0)=1 \\
u(1)=u^{\prime \prime}(1)=e
\end{array}\right\}
$$

The exact solution is $u(x)=e^{x}$.
Our numerical results on the test problems show an improvement in the results when $h=1 / 10$ is used compared to when $h=1 / 5$ is used for each of u_{i}, u_{i}^{\prime} and $u_{i}^{\prime \prime}$ in the three cases considered, as reflected in reduction of absolute errors in Tables 1 to 3 and Figures 1 to 3 .
The maximum absolute errors in u_{i} in Example 1 are $3.531 \mathrm{E}-7$ and $2.209 \mathrm{E}-8$ for $h=1 / 5$ and $h=1 / 10$ respectively, and are reached at $x=0.4$; while the maximum absolute errors in ${ }_{u_{i}}$ in Example 2 are $3.568 \mathrm{E}-5$ and $2.235 \mathrm{E}-6$ for $h=1 / 5$ and $h=1 / 10$, respectively, which are attained at $x=0.6$. In Example 3 , the maximum absolute errors are $1.434 \mathrm{E}-4$ and $3.564 \mathrm{E}-5$ for $h=1 / 5$ and $h=1 / 10$, respectively, and are reached at $x=0.6$. Therefore, maximum absolute errorin u_{i} is attained when x is around the middle of the interval $[a, b]$. It is equally observed from the figures that absolute errors in $u_{i}^{\prime \prime}$ exhibit similar pattern of behaviour as absolute errors in u_{i} over the interval $[a, b]$.
The proposed method is of order $O\left(h^{4}\right)$, as established

Table 1. Observed absolute errors in Example 1.

x_{i}	u_{i}		u_{i}^{\prime}		$u_{i}^{\prime \prime}$	
	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$
0	0	0	$5.920 \mathrm{E}-4$	$7.852 \mathrm{E}-5$	0	0
0.2	$2.723 \mathrm{E}-7$	$1.704 \mathrm{E}-8$	$4.372 \mathrm{E}-4$	$5.873 \mathrm{E}-5$	$2.723 \mathrm{E}-7$	$1.704 \mathrm{E}-8$
0.4	$3.531 \mathrm{E}-7$	$2.209 \mathrm{E}-8$	$3.028 \mathrm{E}-4$	$4.131 \mathrm{E}-5$	$3.531 \mathrm{E}-7$	$2.209 \mathrm{E}-8$
0.6	$3.027 \mathrm{E}-7$	$1.894 \mathrm{E}-8$	$1.769 \mathrm{E}-4$	$2.557 \mathrm{E}-5$	$3.027 \mathrm{E}-7$	$1.894 \mathrm{E}-8$
0.8	$1.709 \mathrm{E}-7$	$1.069 \mathrm{E}-8$	$6.005 \mathrm{E}-5$	$1.088 \mathrm{E}-5$	$1.709 \mathrm{E}-7$	$1.069 \mathrm{E}-8$
1.0	0	0	$5.415 \mathrm{E}-5$	$3.370 \mathrm{E}-6$	0	0

Table 2. Observed absolute errors in Example 2.

	u_{i}		u_{i}^{\prime}		$u_{i}^{\prime \prime}$	
x_{i}	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$
0	0	0	$3.398 \mathrm{E}-3$	$3.772 \mathrm{E}-4$	0	0
0.2	$1.960 \mathrm{E}-5$	$1.228 \mathrm{E}-6$	$5.058 \mathrm{E}-3$	$5.700 \mathrm{E}-4$	$3.858 \mathrm{E}-5$	$2.416 \mathrm{E}-6$
0.4	$3.211 \mathrm{E}-5$	$2.012 \mathrm{E}-6$	$7.390 \mathrm{E}-3$	$8.411 \mathrm{E}-4$	$6.271 \mathrm{E}-5$	$3.927 \mathrm{E}-6$
0.6	$3.568 \mathrm{E}-5$	$2.235 \mathrm{E}-6$	$1.062 \mathrm{E}-2$	$1.218 \mathrm{E}-3$	$6.887 \mathrm{E}-5$	$4.313 \mathrm{E}-6$
0.8	$2.683 \mathrm{E}-5$	$1.681 \mathrm{E}-6$	$1.505 \mathrm{E}-2$	$1.735 \mathrm{E}-3$	$5.106 \mathrm{E}-5$	$3.197 \mathrm{E}-6$
1.0	0	0	$1.568 \mathrm{E}-2$	$2.105 \mathrm{E}-3$	0	0

Table 3. Observed absolute errors in Example 3.

x_{i}	u_{i}		u_{i}^{\prime}		$u_{i}^{\prime \prime}$	
	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$	$h=1 / 5$	$h=1 / 10$
0	0	0	$3.097 \mathrm{E}-4$	$1.848 \mathrm{E}-5$	0	0
0.2	$8.075 \mathrm{E}-5$	$2.008 \mathrm{E}-5$	$5.387 \mathrm{E}-4$	$1.735 \mathrm{E}-5$	$6.618 \mathrm{E}-4$	$1.635 \mathrm{E}-4$
0.4	$1.357 \mathrm{E}-4$	$3.373 \mathrm{E}-5$	$9.278 \mathrm{E}-4$	$8.798 \mathrm{E}-5$	$1.214 \mathrm{E}-3$	$2.996 \mathrm{E}-4$
0.6	$1.434 \mathrm{E}-4$	$3.564 \mathrm{E}-5$	$1.447 \mathrm{E}-3$	$1.850 \mathrm{E}-4$	$1.485 \mathrm{E}-3$	$3.661 \mathrm{E}-4$
0.8	$9.408 \mathrm{E}-5$	$2.339 \mathrm{E}-5$	$2.027 \mathrm{E}-3$	$2.895 \mathrm{E}-4$	$1.211 \mathrm{E}-3$	$2.982 \mathrm{E}-4$
1.0	0	0	$1.148 \mathrm{E}-3$	$8.753 \mathrm{E}-5$	0	0

in expression (13), if $\alpha=1 / 12,1-2 \alpha-2 \beta=0$ and $a_{1}(x)=a_{2}(x)=0$. However, if either $\quad a_{1}(x) \neq 0$ or $a_{2}(x) \neq 0$ or both $a_{1}(x) \neq 0$ and $a_{2}(x) \neq 0$, the technique produces an order $O\left(h^{2}\right)$ result because the finite-difference approximations of first derivative of u and v used are of $O\left(h^{2}\right)$. This accounts for the reason why when h is reduced by a factor of 2 it leads to a reduction of absolute
error in u_{i} by a factor of 16 in Examples 1 and 2; while the same reduction produces a reduction of absolute error in u_{i} by a factor of 4 in Example 3, as can be observed in Tables 1 to 3. Richardson's extrapolation method can be applied in conjunction with the proposed method to further enhance its accuracy.

CONCLUSION

A non-polynomial spline method has been considered for

$\longrightarrow h=1 / 5 \cdots \cdots h=1 / 10$

Figure 1. Comparison of absolute errors in (a) u, (b) u^{\prime} and (c) u " for two step sizes in Example 1.

Figure 2. Comparison of absolute errors in (a) u, (b) u^{\prime}, (c) u " for two step sizes in Example 2.

C

$$
\longrightarrow h=1 / 5 \cdots \cdots h=1 / 10
$$

Figure 3. Comparison of absolute errors in (a) u, (b) u^{\prime}, (c) $u^{\prime \prime}$ for two step sizes in Example 3.
the numerical solution of fourth-order boundary value problems. The method is tested on three problems and the results obtained are very encouraging. The method is simple and easy to apply.

REFERENCES

Alberg JH, Ito T (1975). A collocation method for two-point boundaryvalue problems. Maths. Comput., 29: 761-776.
Al-Said EA (2008). Quadratic spline method for solving fourth-order obstacle problems. Appl. Math. Sci., 2: 1137-1144.

Caglar N, Caglar H (2009). B-Spline method for solving linear system of second-order boundary-value problems. Comput. Maths. Applicat., 57: 757-762.
Caglar HN, Caglar SH (1999). The numerical solution of fifth-order boundary-value problems with sixth-degree B-spline functions. Appl. Maths. Letter, 12: 25-30.
Papamichael N, Worsey AJ (1981). A cubic spline method for the solution of a linear fourth-order boundary-value problems. J. Comput. Appl. Math., 7: 187-189.
Rashidinia J, Mohammadi R, Jalilian R, Ghasemi M (2007). Convergence of cubic spline approach to the solution of a system of boundary-value problems. Appl. Math. Comp., 192: 319-331.
Siddiqi SS, Akram G (2008). Quintic spline solution of fourth-order
boundary-value problems. Internat. J. Numer. Anal. Model., 5: 101111.

Siddiqi SS, Akram G, Elahi A (2008). Quartic spline solution of fifthorder boundary-value problems. Appl. Maths. Comp., 196: 214-220.
Siraj-ul-Islam, Noor MA, Tirmizi IA, Khan MA (2006). Quadratic nonpolynomial spline approach to the solution of a system of secondorder boundaryvalue problems. Appl. Maths. Comp., 179: 153-160.
Taiwo OA, Ogunlaran OM (2008). Numerical solution of fourth-order linear ordinary differential equations by cubic-spline collocation Tau method. J. Maths. Stat., 4: 264-268.

Usmani RA (1978). Discrete-variable methods for a boundary-value problem with engineering applications. Math. Comput., 32: 10871096.

Usmani RA (1980). Spline solutions for non-linear two-point boundaryvalue problems. Internat. J. Math. Math. Sci., 3: 151-167.

[^0]: *Corresponding author. E-mail: oataiwo2002@yahoo.com

