
 

 

 

 
Vol. 9(20), pp. 444-453, 30 October, 2014 

DOI: 10.5897/IJPS2014.4193 

ISSN 1992 - 1950  

Article Number: CBF877E48339 

Copyright © 2014  

Author(s) retain the copyright of this article 

http://www.academicjournals.org/IJPS 

International Journal of Physical  
Sciences 

 
 
 
 
 
 

Full Length Research Paper 

 

Guiding of light with pinholes 
 

Makoto Morinaga 
 

Institute for Laser Science, University of Electro-Communications Chofu, Tokyo, 182-8585 Japan. 
 

Received 30 July, 2014; Accepted 8 October, 2014 

 

A new type of light waveguide using linearly aligned pinholes is presented. Results of basic experiments 
are compared with theoretical estimates calculated using continuous model. This model predicts that 
the loss per unit length of the light inside this waveguide is proportional to the square root of the 
spacing between the pinholes. Since this waveguide utilizes no transparent material, it can be used to 
guide electromagnetic waves of wide wavelength ranges as well as other waves such as matter waves.  
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INTRODUCTION 
 
Waveguides for electromagnetic fields are widely used to 
trasmit power as well as information. Classical 
waveguides for electromagnetic fields ranges from coaxial 
cables for radio frequency (RF) fields, metal waveguides 
for microwave fields to dielectric waveguides (optical 
fibers) for optical fields (Cronin, 1995). Among them 
optical fibers bear extremely low transmission loss and 
are widely used not only for classical communication 
(Agrawal, 2010) but also for quantum communication 
(Gisin, et al., 2006). Also photonic crystals have been 
implemented recently (Skorobogatiy and Yang, 2009). All 
of them require special media of high transmissivity 
and/or high reflectivity. In this paper, we propose a new 
type of waveguide composed of linearly aligned pinholes 
of same diameter (Figure 1). 

Such a structure is meaningless in geometrical optics 
since whether a ray transmits through this structure 
depends only on the geometrical arrangement of the ray 
and the first and the last pinholes, and pinholes in 
between play no role for the transmission. However, if we 

treat light as wave, it turns out that the transmission loss 

at each pinhole has a form 
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 where λ is the 
wavelength of the light, L is the spacing between pinholes, 
d is the radius of the pinholes, and β is a constant that 
depends on the order of the transverse mode of the light 
(Figure 1). Thus the transmission loss per unit length is 

proportional to L so that it can in principle be made 
arbitrarily small by making the spacing L between the 
pinholes smaller and smaller. Since no special material is 
required for its construction, it can be used to guide 
electromagnetic fields of wide frequency ranges, or waves 
of other kinds such as matter waves. Or it can also be 
used to guide and/or confine atoms with light guided by 
this pinhole waveguide because the space where light 
passes through is vacant. In the following, we present 
basic experiments with pinhole waveguides and, in the 
appendix, we will outline a theoretical treatment of this 

waveguide  using  continuous  model  to analyze the  
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Figure 1. Construction of the pinhole waveguide. Pinholes of radius d are aligned on a 
straight line with spacing L between the pinholes. 

 
 
 

 
 
Figure 2. Light from a laser module propagates through pinholes and is detected by either an image sensor or a 

power meter at the end of the pinhole array which also can be inserted in between the pinholes. Filters are used to 
select 1064 nm/532 nm wavelengths. The distance L

0
 between the laser module and the 1st pinhole is 450 mm. 

 
 
 
experimental results. For an array of slits, see (Morinaga, 
2014) for asymptotic analysis and numerical simulation 
that calculate the diffraction directly. 
 
 
EXPERIMENTS WITH PINHOLE WAVEGUIDES 
 
The experimental setup is schematically shown in Figure 
2. A Diode Pumped Solid State (DPSS) laser module 
generates TEM

00
 output of wavelength at both 1064 and 

532 nm. 1064 nm (532 nm) wavelength is selected by 
inserting a visible cut filter (infrared cut filter). Part of the 
laser beam is reflected into a photo diode for power 
stabilization. When the laser beam enters the pinhole 
array, the beam size is considerably larger than the size 
of the pinhole and we can regard the incident wave as a 
spherical wave. Each pinhole is mounted on a 
xy-translation stage which is fixed on a linear rail lying in 
z-direction. Up to 10 pinholes can be set on the rail with 
minimum spacing of 15 mm (29 mm to insert the image 
sensor or the power meter between the pinholes).  
 
 

Pinhole alignment 
 
The alignment procedure of the pinholes on a straight line  

is as follows. The power meter is always set at the end of 
the pinhole array during this procedure and the light at 
532 nm wavelength is used. First we set no pinhole 
except the last pinhole (pinhole no.9 in Figure 2) and 
maximize the power by adjusting the xy-position of this 
pinhole (the power is plotted as ’0’ in the horizontal axis of 
Figure 3). Next we set the first pinhole (pinhole no.0 in 
Figure 2) and maximize the power by adjusting the 
xy-position of this pinhole (plotted as ’1’ in the horizontal 
axis of Figure 3). And then pinhole no.1 (plotted as ’2’), 
pinhole no.2 (plotted as ’3’), and so on. The spacing 
between the pinholes is L=45 mm. The measured values 
are compared with simulated values obtained by 
calculating the sequential diffraction by the pinholes. From 
Figure 3, we see that the transmitted light power 
increases with increasing number of pinholes, which 
cannot be explained by geometrical optics.  

 
 
Propagation through the pinhole array 
 
After setting and aligning all the 10 pinholes light power 
after each pinhole is measured and compared with the 
theoretical curve calculated using the Equation (19) in the 
appendix (Figure 4). In the calculation we neglected the 
curvature of the wavefront of the input laser so  that  the  
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Figure 3. The power of the output of the pinhole array is plotted while inserting 
pinholes one by one. Pinhole diameter: 2d=0.5 mm. Light wavelength: λ=532 nm. 
Calculated values are also plotted for comparison. 

 
 
 

 
 
Figure 4. Light power after each pinhole is plotted. The power after the pinhole no.0 is 

normalized to 1. Pinhole spacing: L=45 mm. 2d=0.5 mm. Two lines are theoretical curves 
calculated using the continuous model (Equation (19)). 

 
 
 
incident wave is assumed to be a plane wave and we 
used the value of ξ given in Equation (1). The theoretical 
curves are plotted with no fitting parameter except that the 

initial power is normalized to 1 for both experiment and 
theory. The tendency that the experimental value is lower 
than the theoretical curve might be explained by the  fact  
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Figure 5. Beam images after pinhole no.0 (left image) and pinhole no.3 (right 

image). The graph shows their radial distributions. 
 

 
 

 
 
Figure 6. Schematics of the light bending experiment. 

 
 
 

that the misalignment of the pinhole always decreases the 
power from that without misalignment. The initial square 
beam cut out from the incident plane wave contains high 
order transverse modes that attenuate fast compared with 
the lower order mode leading to the initial rapid decay. 
After propagating through several pinholes, lowest order 
mode dominates, then showing slower decay.  

In Figure 5 beam images after the pinhole no.0 and no.3 
are shown (λ=532 nm). The latter shows smooth profile 
with a peak intensity at the center which qualitatively 
confirms the explanation given above (the distance of 
about 17 mm from the pinhole to the image sensor makes 
fine structure in the left image due to diffraction). 
 
 

Bending of light 
 

The linear rail on which pinholes is sitting is fixed  to  the 

optical table at three points: at the left end, in the middle 
near the pinhole no.0, and at the right end. We remove 
the fixing screw at the right end and push this end to the 
transverse direction so that the rail is bent elastically 
(Figure 6).  

In Figure 7 we plot the power of the output light versus 
the displacement of the last pinhole (pinhole no.9). The 
experimental value is compared with a theoretical curve 
assuming the geometrical optics. 

Certain amount of light is transmitted even with 
displacements larger than the diameter of the pinhole (0.5 
mm). The measured values are also compared with a 
theoretical curve using a simplified model: the guided light 
experiences several (additional) reflections inside the 
waveguide when the waveguide is bent. Sum of the 
reflection angle Θ

i
 (measured from the reflection 

surface) is equal to a half of the bending angle Θ  of  the  
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Figure 7. Power of the transmitted light is measured while bending the 

waveguide. 2d=0.5 mm. λ=532 nm. L=45 mm. Dotted line is the theoretical 
curve following the geometrical optics. The measured values are also 
compared with a theoretical curve. 

 
 
 

waveguide at the output end: 
i

 Θ
i
=Θ/2. The power loss 

at each reflection is known to be 4 πL/λ Θ
i
 when 

Θ
i
≪ λ/L  (Kouznetsov and Oberst, 2005b). The final 

output power I is calculated as 

I=I
0
 
i

 exp(−4 πL/λ Θ
i
)=I

0
exp(−2 πL/λ Θ)=I

0
exp(− πL/λ  

3δ
L

1

) 

 
where I

0
 is the input power, δ is the transverse 

displacement at the output end, and L
1
=405 mm is the 

total length of the waveguide. Here we also used the 

relation Θ= 
3δ

2L
1
 derived from the elementary mechanics. 

The agreement is acceptable taking into account that no 
fitting parameter is used in the calculation although the 
discrepancy is apparent when the displacement is small. 
This is because the model does not include the notion of 
mode spacing which would prevent mixing of modes for 
small bending. 

 
 
CONCLUSION AND OUTLOOK 

 
In this paper we presented basic experiments of light 
guiding with a pinhole array. A theoretical study using a 
continuous model was also developed which predicts that 
the loss per unit length is proportional to the square root of 
the spacing between the pinholes. The experimental 
results roughly confirm the theoretical estimates. However, 
further study is needed to understand the details of this 
new waveguide, such as how the thickness of the 

pinholes affects the transmission. Also a refined theory is 
needed to explain the transmission behavior quantitatively 
when the pinhole array is bent.  
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Appendix Figure 1. (a) Array of masks separated by L. (b) The mask array is 

replaced with continuous absorbing medium. 

 
 
 
APPENDIX 
 
Continuous model 
 
Dealing directly with a discrete array of masks (pinholes, 
slits,...) for theoretical analysis is not an easy task. Instead, 
we introduce in this appendix a model in which the 
discrete set of masks is replaced with continuous medium 
of some absorbance that fills the closed region of the 
masks (Appendix Figure 1). This continuous model was 
first introduced for an array of half-planes to account the 
enhanced quantum reflection of matter waves from the 
ridged surfaces (Kouznetsov and Oberst, 2005a). The 
lowest order transverse mode function for the slit array 
and its loss parameter are also calculated already 
(Kouznetsov and Morinaga, 2012). Here we will determine 
all the transverse mode functions and their propagation 
parameter for the case of the slit array and the pinhole 
array. The light field is treated as a scalar field (scalar 
theory). The wave equation for this model is given by  
 

−k
2

0
ψ(x,y,z)={1−iε Θ(x,y)}∇2ψ(x,y,z)  

 
 
where k

0
 is the wavenumber of light, Θ(x,y) is a step 

function that takes value 1 (0) in the closed (open) region 
of masks, and ε is a positive constant related to the 

absorptance of the medium. As we shall see below ε≪1 

for our system under consideration. First we consider a 
plane wave propagating through the area filled uniformly 
with such absorbing medium. Taking z-axis as the 
direction of propagation, the wave equation is written as: 

  

−k
2
0

ψ(z)=(1−iε)ψ''(z). 

Its solution is given by  
 

ψ(z)=e
ikzz

 
 

with k
2
0
=(1−iε)k

2
z
≈ 









 



1+ 

i

2
ε

−1

k
z

2

 so that 

k
z
= 



1+ 

i

2
ε k

0
 and |ψ(z)|

2
=e

−ζ0z
 with the intensity 

absorptance ζ
0

=εk
0
. Given that this absorbing medium 

imitates a stack of opaque masks separated by a distance 

L, we expect that ζ
0
∼ 

1
L
 so that ε∼ 

1
k
0
L
. Thus we shall 

write ε= 
ξ

k
0
L
 with a positive parameter ξ of order of 1. 

We consider the parameter region where the separation 
of masks L is much larger than the wavelength, so that 

ε≪1. The continuous model itself cannot determine the 

value of ξ (or ε). By comparing the attenuation of a wave 
propagating in a slit waveguide calculated using 
continuous model with that calculated with direct method 
(Morinaga, 2014) it is shown that  
 

ξ= 
9
2
π.           (1) 

 
 
A.1  Slit array 
 
Consider an array of slits of opening width 2d (open for 
|x|<d). The wave equation is written as:  
 

−k
2
0

ψ(x,z)={1−iε Θ(x
2
−d

2
)}(∂

2
x
+∂

2
z
)ψ(x,z)  
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where Θ is the conventional step function defined as:  
 

Θ(s)≡ 



 
0(s<0)
1(s≥0)

. 

 
Because of the translational symmetry in z-axis direction, 
we can assume the form of the solution as 

ψ(x,z)=ϕ(x) eikzz
 

 (a general solution is the sum of 
such solutions). Below we also assume that the wave 
propagates nearly in z direction so that k

z
≈k

0
. 

 
 
Region A (inside the opening of slits) |x|≤d 
 
The wave equation for the transverse wavefunction ϕ(x) 
here is  
  

−(k
2
0
−k

2
z

)ϕ(x)=ϕ''(x) 

 
with a solution  
  
ϕ(x)=cs(k

A
x),  

 
where cs is defined as  
  

cs(u)= 



 
cos u (evenparitymode)
sin u  (oddparitymode)

,              (2) 

 

and k
A

 satisfies k
2
0
=k

2
A

+k
2
z

. We are considering the 

situation in which the wave is nearly confined in the 
opening region |x|≤d and hence ϕ(±d)≈0, so that  

kAd≈ 
n+1

2
π (n=0,1,2,...)  

 provided that we use cos 

(sin) in (2) for even (odd) n. Defining k
n
≡ 

n+1

2d
π and write 

k
A

=k
n
+β+iγ with real numbers β and γ, then |βd|≪1 and 

|γd|≪1.  

 
ϕ(±d)=cs(±k

A
d)≈±(β+iγ)d cs'(±k

n
d) 

ϕ'(±d)=k
A

 cs'(±k
A

d)≈k
n

 cs'(±k
n
d) 


 

ϕ'
ϕ

x=±d

≈± 

k
n

(β+iγ)d
 

                            (3) 
 
 
Region B (outside the opening of slits): |x|≥d 
 
Here the wave equation is 
  

−{k
2
0
−(1−iε)k

2
z

}ϕ(x)=(1−iε)ϕ''(x) 

 
 
 
 
so that the solution is, taking into account that it should 
not diverge when x→±∞,  
 

ϕ(x)∝e
ikB|x|

          (4) 

 

where k
B

 satisfies k
2
0
=(1−iε)(k

2
B

+k
2
z
)  and Im k

B
>0 (the 

proportionality factor in Equation (4) has opposite sign for 
x≥d and x≤−d for the odd parity solution). Thus  
 


 

ϕ'
ϕ

x=±d

=±ik
B

 

          (5) 
 
 
Boundary condition at x=±d 
 
By requiring ϕ(x) and ϕ'(x) is continuous at x=±d, from 
Equations (3) and (5) we find  
 

ik
B

= 

k
n

(β+iγ)d
. 
          (6) 

 

By noting k
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B
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2
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 and |k
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|
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we see  
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so that  
 

k
B
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1+i

 2
 εk

0
.                (8) 

 
Using Equation (6)  
 

β+iγ= 

k
n

ik
B

d
=− 

1+i

 2
 

k
n

 εk
0
d

 

 
and we obtain  
  

k
A

=k
n
+β+iγ= 







1− 

1+i

 2εk
0
d

k
n
.                    (9) 

 

From the assumption that |βd|≪1 and |γd|≪1 we see 

εk
0
d≫1, that is, 

  
L

k
0
d
2
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1

2π
 
λL

d
2
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Finally k

z
 is derived as  
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From this we calculate the light attenuation along the 
waveguide  
 

|e
ikzz

|
2
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−ζz
 

 
where the attenuation coefficient ζ=2Im k

z
 is calculated 

as  
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 2k

2
n

 εk
2
0

d
=(n+1)

2
 

 2π
2

4 εk
2
0

d
3
=(n+1)

2
 

 2Lπ
2

4 ξk
3
0

d
3

 

 

using ε= 
ξ

k
0
L

. The attenuation per length L (that is, per 

one slit) ζL can be written as a function of a single 

dimensionless parameter 
λL

d
2
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ζL=(n+1)
2
 
 2π

2

4 ξ
 







 

L

k
0

d
2

 
3
2
=(n+1)

2
 

 π

8 ξ
 






 

λL

d
2

 
3
2

(12) 

 
 
A.2  Pinhole array 
 
In the case of an array of pinholes of diameter d, using 
cylindrical coordinate (r,φ,z), the wave equation is written 
as  

 

−k
2
0ψ(r,φ,z)={1−iε Θ(r2−d2)} 









∂
2
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1
r∂

r
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1

r2∂
2
φ+∂

2
z ψ(r,φ,z).  

 
 
In the same way as in the case of slit array, we shall 

derive a solution of the form ψ(r,φ,z)=ϕ(r,φ)eikzz
  

with k
z
≈k

0
. 

 
 
Region A (inside the opening of pinholes): |r|≤d 
 
The wave equation  
 

−(k
2
0
−k

2
z

)ϕ(r,φ)= 






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2
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is solved using the Bessel functions of the 1st kind 
J
m

 (m=0,±1,±2,...) :  
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ϕ(r,φ)=J
m

(k
A

r)e
imφ

 

 

where 
kA 

 satisfies k
2
0
=k

2
A

+k
2
z

. Again we postulate 

ϕ(d,φ)≈0 which leads to
kAd≈ϱ

(m)

n
 (n=0,1,2,...)  

. Here 

ϱ
(m)
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, ϱ
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1

, ϱ
(m)
2

,... are positive zeros of J
m

(ϱ) sorted in 

ascending order. We define k
(m)
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≡ 
ϱ
(m)
n

d
 and write 

k
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=k
(m)
n

+β+iγ using real numbers β and γ with |βd|≪1 

and |γd|≪1.  
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Region B (outside the opening of pinholes): |r|≥d 
 
The wave equation is written as:  
  

−{k
2
0
−(1−iε)k

2
z
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
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so that the solution is given by  
  

ϕ∝H
(1)
m

(k
B

r)e
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if we take into account its behavior when r→∞ (H
(1)
m

 are 

the Hankel functions of the 1st kind). Here k
B
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2
0
=(1−iε)(k

2
B
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z
) . Noting that k

2
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d
2
−k

2
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2
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iε
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2
0
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2

 

and that the absolute value of the right-hand side is much 
larger that 1 (Equation (10)) whereas k

A
d in the left-hand 

side is of order of 1 so that we can neglect this term and 
Equations (7) and (8) holds as in the case of slit array. 

From these we see that |k
B

d|≫1 and arg(k
B

d)≈ 
π
4

 (and 

thus −π<arg(k
B

d)<2π), so that we can use the following 

asymptotic form of H
(1)
n

 for ϱ=k
B

d (see (NIST)):  

 

H
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2

πϱ
exp 



i 



ϱ− 

2m+1

4
π  



452          Int. J. Phys. Sci. 
 
 
 

H
(1)'
m

(ϱ)≈i  
2

πϱ
exp 



i 



ϱ− 

2m+1

4
π  

 
Which lead to 
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∂
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ϕ

ϕ
(d,φ)

=ik
B
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Boundary condition at r=d 
 

Continuity of ϕ(r,φ) and 
∂rϕ(r,φ)  

at r=d yields, from 
Equations (13) and (14),  
 

ik
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= 
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(m)
n

(β+iγ)d
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Equation (15) has the same form as Equation (5) with k

n

replaced by k
(m)
n

, so that similar to the case of slit array, 

we obtain  
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From this the attenuation of light along the waveguide  
  

|e
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is calculated giving the attenuation coefficient ζ=2Im k

z
 

as  
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      (16) 

 
and the attenuation per length L (that is, per one pinhole) 
ζL is given by  
  

ζL= 
 2ϱ

(m) 2
n

 ξ
 







 

L

k
0
d

2

 
3
2
= 

ϱ
(m) 2
n

2 ξπ
3
 






 

λL

d
2

 
3
2
.     (17) 

 
Note that the modes with the same transverse 

wavenumber k
⊥

 (k
⊥

=k
n
= 

n+1

2d
π in Equation (12) for  

 
 
 
 

the slits and 
k⊥=k

(m)

n
= 

ϱ
(m) 2

n

d
 

 in Equation (17) for 
the pinholes) have the same decay parameter. 
 
 
A.3  Attenuation of a multi-transverse-mode light 
 
In the previous section we estimated the attenuation of a 
single transverse mode wave. Each transverse mode is 
specified by a pair (m,n) of an integer m and a 
non-negative integer n, and if the wave is confined tightly 
enough in the pinhole waveguide, the transverse mode 
functions are given by  
  

ϕ
mn

(r,φ)= 




 
α

mn
J
m

(k
(m)
n

r)e
imφ

(r≤d)

0 (r>d)
 

 

(α
mn

 are the normalization factors). Note that these are 

the Bessel beam transverse mode functions clipped at 
one of their nodes in the radial direction. The orthonormal 
condition is written as 
 

δ
mm'

δ
nn'

=〈ϕ
mn

,ϕ
m'n'

〉= 

0

∞

 rdr 

0

2π

 dφ ϕ
*
mn

(r,φ)ϕ
m'n'

(r,φ).  

 

Here, we consider, as an example, the case where a 

plane wave ψ
p
= 

1

 πd
2
e
ik0z

 is incident into the 

waveguide, and calculate how the wave attenuates while 
it propagates along the waveguide. The incident 
wavefront is cut out at the input end of the waveguide (we 
take the input end as z=0) giving the transverse wave 
function as 
  

ϕ
p

(r,φ)= 
1

 πd
2
Θ(d

2
−r

2
)  

 

and such wavefront is, from the symmetry consideration, 
expanded with only m=0 modes:  
 

ϕ
p

= 
n=0

∞
 β

n
ϕ

0n
         (18) 

 

By integrating the square of absolute value of both sides 
of the above equation in (r,φ) plane, we see that 


n=0

∞
 |β

n
|
2
=1. The power attenuation is given by  

 

P(z)= 
n=0

∞
 |β

n
|
2
exp(−ζ

(0)
n

z).       (19) 



 
 
 
 

Here ζ
(m)
n

 is ζ given in Equation (16). By taking inner 

product of both sides of Equation (18) with ϕ
0n

,  

 

β
n
=〈ϕ

0n
,ϕ

p
〉=2πα

*
0n 

1

 πd2
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0

d

 rdrJ
0
(k

(0)
n r)= 

2 πα
*
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k
(0)
n

J
1
(ϱ

(0)
n )= 

2

ϱ
(0)
n

 

 
 

Here we used 
d

dϱ
(ϱJ

1
(ϱ))=ϱJ

0
(ϱ) and the value of α

0n

derived in the next subsection (20). 
 
 
A.4  Normalization factors α

0n
 

 
From the normalization conditions of ϕ

0n
 we find  
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1=〈ϕ
0n

,ϕ
0n

〉=2π|α
0n

|
2
 

0

d

 rdrJ
2
0
(k

(m)
n

r)=π|α
0n

|
2
d
2
J
2
1
(ϱ

(0)
n

). 

 
Here we used the formula  
  

d
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
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



ϱ
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2
+J
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2

2
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and J
0
(ϱ

(0)
n

)=0. α
0n

 are determined as, besides the 

phase factor,  
 

α
0n

= 
1

 πdJ
1

(ϱ
(0)
n

)
.        (20) 


