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In this paper, we obtain solution of Schrödinger equation in general Besov spaces. Precise results on 

pL  and general Besov estimates of the maximal function of the solutions to the Schrodinger equation 
are given. The obtained results improve some recent results. Further, we shall consider estimates of 

general 2L -norm and the general Besov type norm of integrals of this kind by means of the general 

Besov norm of the function f, and give pL
-estimates of their maximal functions. 
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INTRODUCTION 
 
The Schrödinger equation was formulated in 1926 by 
Austrian physicist  Erwin Schrödinger. Used in physics, 
specifically quantum mechanics, it is an equation that 
describes how the quantum state of a physical system 
changes in time. The Schrödinger equation takes several 
different forms, depending on the physical situation. Now, 
we present the equation for the general case and for the 
simple case encountered in many textbooks for a general 
quantum system.  

In the standard interpretation of quantum mechanics, 
the quantum state, also called a wave function or state 
vector, is the most complete description that can be given 
to a physical system. Solutions to Schrödinger's equation 
describe not only molecular, atomic and subatomic 
systems, but also macroscopic systems, possibly even 
the whole universe. The most general form is the time-
dependent Schrödinger equation, which gives a 
description of a system evolving with time. For systems in 
a  stationary  state  (that is,  where  the Hamiltonian is not 

explicitly dependent on time), the time-independent 
Schrödinger equation is sufficient. Approximate solutions 
to the time-independent Schrödinger equation are 
commonly used to calculate the energy levels and other 
properties of atoms and molecules.  

Schrödinger's equation can be mathematically 
transformed into Werner Heisenberg's matrix mechanics, 
and into Richard Feynman's path integral formulation. 
The Schrödinger equation describes time in a way that is 
inconvenient for relativistic theories, a problem which is 
not as severe in matrix mechanics and completely absent 
in the path integral formulation. It is well-known that the 
solution is Schrödinger equation (Almeida et al., 2013; 
Cowling, 1983; Furioli and Terraneo, 2003). 
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In this paper we shall consider estimates of the general 
Besov type norm of integrals of this kind by means of the  
general Besov norm of  the  function  "f" (Taoka, 2005),  
then  we  will  give pL estimates of their maximal functions 
for more information on Schrödinger equation (Almeida et 
al., 2013; Carbery, 1985; Jing-Wei et al., 2013; Cowling, 
1983; Muramatu and Taoka, 2004; Müller-Kirsten, 2006; 
Furioli and Terraneo, 2003; Fukuma and Muramatu, 
1999; Polelier, 2011; Michael et al., 2012; Shankar, 1994; 
Taoka, 2005). Our motivations in the present work are 
slightly different from what has previously been done. 
Firstly, we aim at a better understanding of the recent 
construction of self-similar solutions for Equation (1). A 
self-similar solution is by definition invariant by the 
scaling Equation (2), and therefore cannot be obtained by 
these aforementioned results in Sobolev spaces. 
 

Edfawy          741 
 
 
 
RESULTS 
 
Our first result is the following theorem: 
  
Theorem 1   
 
Let σ be a positive number, I = (0, 1), γ > 1 and let  

∞<< qp,1
 

Assume that h(t, ξ), h*(t, ξ)  are real-valued, measurable, 

and 
∞C  in t and the inequality 
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Holds for any positive integer 
,k
 where kλ

 is a constant 

independent of t  and 
ξ

 and 
βα and

 are positive 
constants. Then the operator  
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Proof 
 

First, consider the case where q = 2 and σ is a non-

negative integer m. Notice that 
mm

HB =2,2 . Then, 
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  Hence using Parseval's formula 
we obtain that 
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Hence, we deduce that  
 

( ) [ ]
)()(

2

))(;(1 ||||||||||||
2

nknmnm RHRHmRLIH
gfgfT γγ βαλ +≤+

 
 
Since, the Besov spaces are identical with the real 
interpolation of the Sobolev spaces: 
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where Χ  is a Banach space and qp ,.),(.
 denotes the 

real interpolating spaces. Therefore, the conclusion of the 
theorem follows from interpolation of linear operators and 
the fact that T1 is bounded from:  
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integer m. Our proof is therefore completed. For the next 
result we will need the following lemma. 
 
 

Lemma 1   
 

Let I = (0, 1), ∞<<< pq1 , ∞<≤ s0  and let σ be a positive 
number. Then, the general Besov space 
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Proof  
 

The proof of this Lemma is similar to Lemma 1, so we will 
omit it.   
 
 
Theorem 2 
 

Assume that h(t, ξ), h*(t, ξ)  are real-valued, measurable 

satisfying condition of Equation (2). Then the operator  1T  
as defined by Equation (3) will satisfy the following 
inequality: 
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where C  is a constant independent of t  and ξ  and 
βα and  are positive constants.  

 
 
Proof  
 

To get 2L  maximal estimates for the operator of Equation 
(3), from Lemma 1 and the imbedding theorem 
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which, combined with Theorem 1, completes the proof of  
Theorem 2. 
 
 
Theorem 3 
 

Let YX , and Z  be Hilbert spaces, and SandT  be 
operators defined by 
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and ST  is the bounded operator from 
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and is defined by the 
formula 
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where 
βα and

 are positive constants.   
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Since,    
 

 )()()())(( 1111 ξξξ ∧∧∧ +=+ gfKgfT  
 
It follows that 
 

.))(()()(

))(()()(

))(()(

))(()(

))((

)(

)(

dydygfKHe

dydygfKHe

dgfTHe

dgfTHe

xgfST

yxi

n

yxi

n

ix

n

ix

n

ξξξβλ

ξξξαλ

ξξξβλ

ξξξαλ

ξ

ξ

ξ

ξ

++

+=

++

+=

+

∧∧−

∧∧−

∧∧

∧∧

∫

∫

∫

∫

 
 
This completes the proof of our theorem. 
 
 
Remark  
 
It should be remarked that theorems 1, 2, and 3 
generalizing the corresopnding results in Fukuma and 
Muramatu (1999). 
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