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In this article, three dimensional fractional partial differential transform method (FPDTM) has been 
employed to obtain solutions of a System of nonlinear fractional partial differential equations. This 
indicates the validity and great potential of the homotopy analysis method for solving system of 
fractional partial differential equations. Fractional differential transform method can easily be applied to 
nonlinear problems and reduces the size of computational work. With this method exact solutions may 
be obtained without any need of cumbersome work and it is a useful tool for analytical and numerical 
solutions. The fractional derivative is described in the caputo sense. 
 
Key words: Fractional partial differential transform method, Caputo fractional derivative, system of fractional 
partial differential equations. 

 
 
INTRODUCTION  
 
Mathematical modeling of many physical systems leads 
to linear and nonlinear fractional differential equations in 
various fields of physics and engineering. The numerical 
and analytical approximations of such systems have 
been intensively studied since the work of Padovan 
(1987). Recently, several mathematical methods 
including the Adomian decomposition method (Hosseini 
and Jafari, 2009; Lei Wu et al., 2009) variational iteration 
method (Noor et al., 2008; Odibat and Momani, 2006) 
homotopy perturbation method (Jafari and Seifi., 2009; 
Hang Xu et al., 2009) and fractional difference method 
(Podlubny, 1999) have been developed to obtain exact 
and approximate analytic solutions. Some of these 
methods use transformation in order to reduce equations 
into simpler equations or systems of equations and some 
other methods give the solution in a series form which 
converges to the exact solution. Among these solution 
techniques, the variational iteration method and the 
Adomian   decomposition   method   are   the  most  clear  
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methods of solution of fractional differential and integral 
equations, because they provide immediate and visible 
symbolic terms of analytic solutions, as well as numerical 
approximate solutions to both linear and nonlinear 
differential equations without linearization or 
discretization. 

In the last decades, fractional calculus has found 
diverse applications in various scientific and technological 
fields (Podlubny, 1999; Hilfer, 1999), such as thermal 
engineering, acoustics, fluid mechanics, biology, 
chemistry, electromagnetism, control, robotics, viscoelas-
ticity, diffusion, edge detection, turbulence, signal 
processing and many other physical processes. 

The differential transform method was first applied in 
the engineering domain in (Zhou, 2007). In general, the 
differential transform method is applied to the solution of 
electric circuit problems. The differential transform 
method is a numerical method based on the Taylor series 
expansion which constructs an analytical solution in the 
form of a polynomial. The traditional high order Taylor 
series method requires symbolic computation. However, 
the differential transform method obtains a polynomial 
series solution by means   of    an    iterative    procedure.  



 
 
 
 
Recently, the application of differential transform method 
is succesfully extended to obtain analytical approximate 
solutions to linear and nonlinear ordinary differential 
equations of fractional order (Arikoglu and Özkol, 2007). 
A comparison between the differential transform method 
and Adomian decomposition method for solving fractional 
differential equations is given in (Arikoglu and Özkol, 
2007). The fact that the differantial transform method 
solves nonlinear equations without using Adomian 
polynomials can be considered as an advantage of this 
method over the Adomian decomposition method. 

In this Letter, we are interested in extending the 
applicability of differential transform method to systems of 
fractional partial differantial equations. Several numerical 
experiments of linear and nonlinear systems of fractional 
partial differantial equations shall be presented. 
 
 
FRACTIONAL CALCULUS 
 
There are several definitions of a fractional derivative of 
order 0α > (Podlubny, 1999; Caputo, 1967). e.g. 
Riemann–Liouville, Grunwald–Letnikow, Caputo and 
Generalized Functions Approach. The most commonly 
used definitions are the Riemann–Liouville and Caputo. 
We give some basic definitions and properties of the 
fractional calculus theory  which are used further in this 
paper.  
 
 
Definition 1  
 
A real function ( ), 0,f x x >  is said to be in the space 

,C Rµ µ ∈  if there exists a real number ( )p µ> , such 

that 1( ) ( ),pf x x f x=  where 1( ) [0, ),f x C∈ ∞  and it 

said to be in the space  iff  , .m mC f C mµ µ∈ ∈�  

 
 
Definition 2 
 
The Riemann–Liouville fractional integral operator of 
order 0,α ≥  of a function , 1,f Cµ µ∈ ≥ − is defined as 

 

( ) 1
0

0

1
( ) ( ) ,    0,

( )

x
vvJ f x x t f t dt v

v
−= − >

Γ �  

 
0 ( ) ( ).J f x f x=  

 
It has the following properties: 
 
For , 1, , 0f Cµ µ α β∈ ≥ − ≥  and 1:γ >  
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( )

1. ( ) ( ),

2. ( ) ( ),

1
3. .

( 1)

J J f x J f x

J J f x J J f x

J x x

α β α β

α β β α

α γ α γγ
α γ

+

+

=
=

Γ +
=

Γ + +

 

 
The Riemann–Liouville fractional derivative is mostly 
used by mathematicians but this approach is not suitable 
for the physical problems of the real world since it 
requires the definition of fractional order initial conditions, 
which have no physically meaningful explanation yet. 
Caputo introduced an alternative definition, which has the 
advantage of defining integer order initial conditions for 
fractional order differential equations.  
 
 
Definition 3   
 
The fractional derivative of ( )f x  in the caputo sense is 
defined as 
 

1 ( )
*

0

1
( ) ( ) ( ) ( ) ,

( )

x
v m v m m v m

aD f x J D f x x t f t dt
m v

− − −= = −
Γ − �

 
for 11 ,  ,  0,  .mm v m m x f C−− < < ∈ > ∈�  
 
 
Lemma 1 
 
If  1 ,   and , 1,mm m m f Cµα µ− < < ∈ ∈ ≥ −�  then 

 

*

1

*
0

( ) ( ),

( ) ( ) (0 ) ,  x>0.
!

km
v k

k

D J f x f x

x
J D f x f x f

k

α α

α
−

+

=

=

= −�
 

 
The Caputo fractional derivative is considered here 
because it allows traditional initial and boundary 
conditions to be included in the formulation of the 
problem. In this paper, we have considered the time-
fractional linear partial differential equation, where the 
unknown function  ( , )u u x t=  is assumed to be a causal 
function of time and the fractional derivatives are taken in 
Caputo sense as follows: 
 
 
Definition 4  
 
For m to be the smallest integer that exceeds α , the 
Caputo time-fractional derivative operator of order 0α >  
is defined as: 
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1

0
*

1 ( , )
( ) ,   for 1 ,

( , ) ( )
( , )

( , )
,                                            for .

t m
m

m

t
m

m

u x
t d m m

u xt m
Du xt

t u xt
m

t

α
α

α
α

ξξ ξ α
α ξ

α

− −� ∂− − < <�∂ Γ − ∂�= =�∂ ∂� = ∈� ∂�

�

�

 
 
THREE DIMENSIONAL DIFFERENTIAL 
TRANSFORMATION  
 
We can get on three dimensional differential 
transformation through two dimensional differential 
transformation .The definition and theorems of three 
dimensional fractional differential transform are  as 
follows:  
 
 
Definition 1 
 
The differential transformation of three dimensional  
fractional partial ( , , )u x y t  is 
 

( ) ( ) ( ) ( )0 0 0
0 0 0

, , * * * , ,

1
( , , ) ( ) ( ) ( ) ( , , ) ,

1 1 1
k h m

x y t x y t
U khm D D D uxyt

k h m
α β γ

αβγ α β γ
� �= 	 
Γ + Γ + Γ +

                                                                         (3.1) 
 
 where: 
  

, ,0 ,  , 1,  ( , , ) ( ) ( ) ( )U k h m F k G h J mα β γ α β γα β γ< ≤ =

 
are the components of  ( , , )u x y t . Now the solution of 

( , , )u x y t  is   
 

0 0 0
0 0 0

, , 0 0 0
0 0 0

( , , ) ( )( ) ( )( ) ( )( )

           = ( , , )( ) ( ) ( ) .  

k h m

k h m

k h m

k m h

u x y t F k x x G h y y J m t t

U k h m x x y y t t

α β γ
α β γ

α β γ
α β γ

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

= − − −

− − −

� � �

���
                                                (3.2) 
 
 
Theorem 1 
 
If , , , , , ,( , , ) ( , , ) ( , , ) , then ( , , ) ( , , ) ( , , ).ux yt v x yt wx yt U k hm V k hm W k hmαβγ αβγ αβγ= ± = ±    

 
 
Theorem 2 
 

If , , , ,( , , ) ( , , ), a R, then  ( , , ) ( , , ).ux yt avx yt U khm aV khmαβγ αβγ= ∈ =  

 
Theorems 1 and 2 can  easily be proven. 

 
 
 
 
Theorem 3 
 

, , , , , ,
0 0 0

If ( , ) ( , , ). ( , , ), then

( , , ) ( , , ) ( , , ).
m k h

p r s

u x y v x y t wx y t

U k hm V r h s m pW k r s pα β γ α β γ α β γ
= = =

=

= − − −���     

                                                                                    (3.3)                 
 
 
Proof 
 
From the definition of ( , , )u x y t we can conclude that 
  

, , , ,0 0 0 0 0 0
0 0 0 0 0 0

, , , , 0 0 0
0 0 0 0

(, ,) (, , )( ) ( ) ( ) (, , )( ) ( ) ( )

           = (, , ) ( , , )( ) ( ) ( )

k h m k h m

k h m k h m

k h m
k h m

m r s p

uxyt V khmx x y y t t W khmx x y y t t

V rh smpW k rspx x y y t t

αβγ αβγ

α β γ α β γ

α β
αβγ αβγ

∞ ∞ ∞ ∞ ∞ ∞

= = = = = =

∞

= = = =

= − − − − − −

− − − − − −

��� ���

����
0 0

,  
k h

γ
∞ ∞

= =
��

 
and from three dimensional differential transformation  we  
have 
   

, , , , , ,
0 0 0

( , , ) ( , , ) ( , , ).
m k h

p r s

U k h m V r h s m pW k r s pα β γ α β γ α β γ
= = =

= − − −���
 
 
Theorem 4 
 

For the function 
0*( , , ) ( , , ),  0 1xu x y t D v x y tα α= < ≤  the 

transform function is  
 

( )
( ), , , ,

( 1) 1
( , , ) ( 1, , )

1 m

k
U k h m V k h m

kα β γ α β
α

α
Γ + +

= +
Γ +

    

(3.4) 

 
 
Proof 
 

Using the definition of ( , , )u x y t , we have 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

0 0 0 0
0 0 0

0 0 0
0 0 0

, , * * * * , ,

1
* * * , ,

1
( , , ) ( ) ( ) ( ) ( , , ) ,

1 1 1

1
               ( ) ( ) ( ) ( , , ) ,

1 1 1

( 1) 1
               

1 1 1

k h m
x y x x x y t

k h m
x y x x y t

U k hm D D D D v x y t
k h m

D D D v x y t
k h m

k

k h m

α β γ α
α β γ

α β γ

α β γ

α β γ
α

α β γ

+

� �= 	 
Γ + Γ + Γ +

� �= 	 
Γ + Γ + Γ +

Γ + +
=

Γ + Γ + Γ + Γ( ) ( )

( )
( )

0 0 0
0 0 0

1
* * * , ,

,

( ) ( ) ( ) ( , , ) ,
( 1) 1

( 1) 1
              ( 1, , ).

1

k h m
x y x x y t

D D D v x y t
k

k
V k hm

k

α β γ

α β

α
α

α

+� �	 
+ +

Γ + +
= +

Γ +
 



 
 
 
 
Theorem 5 
 

If 
0*( , , ) ( , , ),  m-1xu x y t D v x y t mλ λ= < ≤ , m N∈ , then 

the transform function for ( , , )u x y t   is  
  

( )
( ), , , ,

1
( , , ) ( , , ).

1
k

U k h m V k h m
kα β γ α β γ

α λ λ
α α

Γ + +
= +

Γ +
 

(3.5)

       
 
Proof  
 
From the definition of the transformation of fractional 
derivative diffrentional equations, we have 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

0 0 0 0
0 0 0

0 0 0
0 0 0

, , * * * * , ,

* * * , ,

1
( , , ) ( ) ( ) ( ) ( , , ) ,

1 1 1

1
               ( ) ( ) ( ) ( , , ) ,

1 1 1

1
               

1 1 1

k h m
x y x x x y t

k h m
x y x x y t

U khm D D D D vxyt
k h m

D D D vxyt
k h m

k
k h m k

α β γ λ
αβγ

α λ β γ

α β γ

α β γ
α λ

α β γ α

+

� �= 	 
Γ + Γ + Γ +

� �= 	 
Γ + Γ + Γ +

Γ + +
=
Γ + Γ + Γ + Γ( ) ( )

( )
( )

0 0 0
0 0 0

* * * , ,

, ,

( ) ( ) ( ) ( , , ) ,
1

1
              ( , , ).

1

k h m
x y x x y t

D D D vxyt

k
V k hm

k

α λ β γ

αβγ

λ
α λ λ
α α

+� �	 
+ +

Γ + +
= +

Γ +

  

 
 
APPLICATION 
 
Example 
 
This is an example of a system of three non-linear partial 
differential equations for three unknown functions 

( , , ) , ( , , )u x y t v x y t  and ( , , )w x y t . It is a kind of problem 
easy to solve without the disadvantages of traditional 
methods when  three-dimensional differential transforms 
are implemented. 
 

* ,t x y y xD u v w v w uα + − = −                            (4.1) 

 

* ,t x y y xD v w u w u vβ + + =                (4.2) 

 

* ,t x y y xD w u v u v wγ + + =                (4.3) 

 
with the initial conditions as  
 

( , ,0) ,x yu x y e +=                                      (4.4) 
 

( , ,0) ,x yv x y e −=                           (4.5) 

Kurulay et al.        909 
 
 
 

( , ,0) .x yw x y e− +=                                 (4.6) 
 
Taking 1β γ= =  and applying the generalized three-
dimonsional diferantial transform on both sides of 
Equation (4.1). Again by using the three-dimensional 
transform assumption for the linear and non-linear terms 
and taking the transform of Equations (4.1) - (4.3), we 
have 
 

( )
( ) ,1,1

0 0 0

0 0 0

( 1) 1
( 1, , ) ( 1)( 1)

1

( 1), , ) ( , 1, ) ( 1)

( 1) ( , 1, ) ( 1, , ) ( , , ),

k h m

r s p

k h m

r s p

k
U k hm k r h s

k

V k r s pWr h s m p k r

h s V r h s m pWk r s p Uk hm

α
α

α = = =

= = =

Γ + +
+ =− − + − +

Γ +

× − + − + − + − +

× − + − + − − + −

���

���     (4.7) 

 

( )
( ) ,1,1

0 0 0

0 0 0

( 1) 1
( 1, , ) ( 1)( 1)

1

( 1), , ) ( , 1, ) ( 1)

( 1) ( 1, , ) ( 1, , )
( , 1, ) ( , , ),

k h m

r s p

k h m

r s p

k
V k hm k r h s

k

W k r s pU r h s m p k r

h s U k r s pU k r s p

W r h s m p V k h m

β
β

β = = =

= = =

Γ + +
+ =− − + − +

Γ +

× − + − + − − − +

× − + − + − +
× − + − +

���

���

  

(4.8)       

   

( )
( ) ,1,1

0 0 0

0 0 0

( 1) 1
( 1, , ) ( 1)( 1)

1

( 1), , ) ( , 1, ) ( 1)

( 1) ( 1, , ) ( , 1, ) ( , , ).

k h m

r s p

k h m

r s p

k
W k hm k r h s

k

Uk r s pVr h s m p k r

h s Vk r s pUr h s m p Wk hm

γ
γ

γ = = =

= = =

Γ + +
+ =− − + − +

Γ +

× − + − + − − − +

× − + − + − + − +

���

���

 

(4.9)

  
   
Application of  the initial conditions Eqs. (4.4)–(4.6) into 
Equation (4.2) yields 
 

2 3 2 3

0 0

( , ,0) 1 1 ,
1! 2! 3! 1! 2! 3!

r s

r s

x x x y y y
Ukh xy

∞ ∞

= =

� �� �
= + + + + + + + +
 �
 �
� �� �

�� � �

 

(4.10) 

   
2 3

0 0

2 3

( , ,0) 1
1! 2! 3!

1 ,
1! 2! 3!

r s

r s

x x x
V k h x y

y y y

∞ ∞

= =

� �
= − + − +
 �
� �

� �
× − + − +
 �
� �

� � �

�

      (4.11)                                           
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2 3

0 0

2 3

( , ,0) 1
1! 2! 3!

1 .
1! 2! 3!

r s

r s

x x x
W k h x y

y y y

∞ ∞

= =

� �
= − + − +
 �
� �

� �
× + + + +
 �
� �

� � �

�

    

(4.12)

  
Thus from Eqs. (4.10)–(4.18) 
 

(0,0,0) 1, (0,0,0) 1, (0,0,0) 1,U V W= = =        (4.13)
  

(1,0,0) 1, (1,0,0) 1, (1,0,0) 1,U V W= = = −        (4.14) 
   

1 1 1
(2,0,0) , (2,0,0) , (2,0,0) ,

2! 2! 2!
U V W= = =

         
(4.15)

                                                    
 

1 1 1
(3,0,0) , (3,0,0) , (3,0,0) ,

3! 3! 3!
U V W= = = −

    
(4.16)

  
in general, we obtain 
 

1
( , ,0) , , 0,1, 2, ,

! !
U k h k h

k h
= = �         (4.17) 

 

( 1)
( , ,0) , , 0,1,2, ,

! !

h

V k h k h
k h
−= = �         (4.18) 

 

( 1)
( , ,0) , , 0,1, 2, ,

! !

k

W k h k h
k h
−= = �              (4.19) 

 
Substituting Equation (4.17) – (4.19) into Eqs. (4.7) – 
(4.9), and by recursive method, 

 
1 1 1

(1,0,1) , (1,0,1) , (1,0,1) ,
( 1) ( 1) ( 1)

U V W
α β λ

=− = =−
Γ + Γ + Γ +

    (4.20) 

 
1 1 1

(1,1,1) , (1,1,1) , (1,1,1) ,
( 1) ( 1) ( 1)

U V W
α β λ

=− =− =−
Γ + Γ + Γ +

    (4.21) 

 
1 1 1

(1,0,2) , (1,0,2) , (1,0,2) ,
1!0! (2 1) 1!0! (2 1) 1!0! (2 1)

U V W
α α α

= = =−
Γ + Γ + Γ +    

(4.22) 

 
1 1 1

(2,2,2) , (2,2,2) , (2,2,2) ,
2!2! (2 1) 2!2! (2 1) 2!2! (2 1)

U V W
α β λ

= = =−
Γ + Γ + Γ +

   (4.23) 

 
and so on. If we  generalize  these  coefficients, we  have 

 

 

 

( 1)
( , , ) , , 0,1,2, ,

! ! ( 1)

m

U k h m if k h m
k h m

−= =
Γ α+

�        (4.24) 

 

( 1)
( , , ) , , 0,1,2, ,

! ! ( 1)

h

V k h m if k h m
k h m

−= =
Γ β+

�        (4.25) 

 

( 1)
( , , ) , , 0,1,2, ,

! ! ( 1)

k

W k h m if k h m
k h m

−= =
Γ λ+

�        (4.26) 

 

Substituting all  ( , , )U k h m , ( , , )V k h m  and ( , , )W k h m  
into Equation (4.2) yields 
 

0 0 0 0 0

1

( 1) 1 1
( , , )

! ! ( 1) ! !

( )
1 ( ),

( 1)

m
r h m k h

k h m k h

m
x y

m

u x y t x y t x y
k h m k h

t
e M t

m

α
α

α

α

α

∞ ∞ ∞ ∞ ∞

= = = = =

∞
+

=

− � �� �= =
 �
 �Γ + � �� �

� �−× + = −
 �Γ +� �

��� � �

�
       (4.27) 

 

0 0 0 0 0

1

( 1) 1 ( 1)
( , , )

! ! ( 1) ! !

( )
1 ( ),

( 1)

h h
r h m k h

k h m k h

m
x y

m

vx yt xyt x y
k h m k h

t
e M t

m

β
β

β

β

β

∞ ∞ ∞ ∞ ∞

= = = = =

∞
−

=

� �− −� �= = 
 �
 �Γ + � �� �

� �
× + =
 �Γ +� �

��� � �

�
      (4.28) 

 

0 0 0 0 0

1

( 1) ( 1) 1
( , , )

! ! ( 1) ! !

( )
1 ( ).

( 1)

k k
r h m k h

k h m k h

m
x y

m

wx yt xyt x y
k h m k h

t
e M t

m

γ
γ

γ

λ

λ

∞ ∞ ∞ ∞ ∞

= = = = =

∞
− +

=

� �− − � �= =
 �
 �Γ + � �� �

� �
× + =
 �Γ +� �

��� � �

�
   

                                                                              

(4.29)  
If  1α β γ= = = , we obtain 

As a result, the exact analytical solution of ( , , )u v w   is 
obtained as 
 
( , , ) ( , , ).x y t x y t x y tu v w e e e+ − − + − + +=             (4.30) 
 
which are the exact solutions of  the equation system. 
The result we have now is the same with which was 
found by (Jafari and Seifi, 2009). We also conclude that 
our approximate solutions are in good agreement with the 
exact values. Both of FPDTM and HAM have highly 
accurate solutions, but FPDTM has an easier way than 
HAM. We can integrate the equation directly without 
calculating the deformation equations. u(x,y,t), v(x,y,t), 
w(x,y,t), and shown their graphs in Figures 1 - 6  were 
obtained  based  on  the  fourth  order   three-dimensional 



 
 
 
 

 
 
Figure 1. u(x,y,t) for � = 0.8, y=0.1. 

 
 
 

 
 
Figure 2. The comparison of  u(x,y,t) for � = 0.8, y=0.1  
with the exact solution of u  for y=0.1. 

 
 
 

 
 
Figure 3. v(x,y,t) for �= 0.8, y=0.1. 
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Figure 4. The comparison of  v(x,y,t) for � = 0.8, 
y=0.1  with the exact solution of v  for y=0.1. 

 
 
 

 
 
Figure 5. w (x,y,t) for � = 0.8, y=0.1. 

 
 
 

 
 
Figure 6. The comparison of  w (x,y,t) for � = 0.8, y=0.1 
with the exact solution of w  for y=0.1 
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FPDEs approximations solutions. 
 
 
CONCLUSION 
 
Three-dimensional differential transform have been 
applied to non-linear systems of FPDEs. The result for 
the example showed that exactly the same solutions 
have been obtained with homotopy analysis method. The 
present method reduces the computational difficulties of 
the other methods and all the calculations can be made 
simple manipulations. The results show that FPDTM is 
powerful mathematical tool for solving systems of 
nonlinear partial differential equations. 
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