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Synchronization of fractional-order chaotic system has received considerable attention for many 
research activities in recent years. In this Letter, we introduced a double scroll of fractional-order 
chaotic system. For the purpose of synchronization, we consider the driven response method and the 
one-way coupling method. Both the theoretical proof and numerical simulations show the effectiveness 
of the two methods. Moreover, we compare the two methods together, and obtain their features 
respectively. 
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INTRODUCTION 
 
Chaos theory is a very interesting phenomenon which 
has provided us a new way of viewing the universe and is 
an important tool to understand the world we live in. 
Chaotic behaviors are useful in many real-world 
applications such as secure communication (Khadra et 
al., 2005), mathematics (Liu and Yang, 2010), time series 
analysis (Zhang et al., 2008), biology (Ma et al., 2009; 
Chen et al., 2011), circuit (Chen et al., 2011), human 
brain dynamics (Schiff et al., 1994) and heart beat 
regulation (Brandt and Chen, 1997), and so on. 

Fractional calculus dates from three hundred years 
ago (Elwakil and Zahran, 1999; Jumarie, 2001; Shahiri et 
al., 2010; Chen et al., 2011), for many years they were 
not used in physics and engineering. One possible 
explanation of such unpopularity could be the multiple on 
equivalent definitions of fractional derivatives. Another 
difficulty is that fractional derivatives have complex 
geometrical interpretation because of their non-local 
character (Riewe, 1997). But it was applied into physics 
and engineering in recent ten years (Zhang and Small, 
2006; Zhang et al., 2010; Chen et al., 2011). It was found  
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that many systems in interdisciplinary fields can be 
described by the fractional differential equations, such as 
Lorenz system (Yang and Zeng, 2010), Chen’s system 
(Li and Peng, 2004), Lü’s system (Daftardar-Gejji and 
Bhalekar, 2010), Duffing system (Gao and Yu, 2005), the 
other fractional-order chaotic systems were described in 
many others works (Zhou et al., 2009; Wang et al., 2010; 
Wu and Lee, 2010; Swingle et al., 2011; Kurulay et al., 
2010; Mohyud-Din et al., 2011). Due to the lack of 
appropriate mathematical methods, fractional-order 
dynamic systems were studied only marginally in the 
design and practice of control systems in the last few 
decades. However, in the recent years, emergence of 
effective methods in differentiation and integration of non-
integer order equations makes fractional-order systems 
more and more attractive for the systems synchronization 
community. 

In recent years, chaos synchronization (Chen, 2005; 
Kiani-B et al., 2009; Ge and Hsu, 2008; Song et al., 2010; 
Wei and Yang, 2009; Lin et al., 2011; Dadras and 
Momeni, 2010; Chen et al., 2011) has received ever 
increasing attention. In Kiani-B et al. (2009), a fractional 
chaotic communication method, which used an extended 
fractional Kalman filter, was presented. In Ge and Hsu 
(2008), chaos excited, chaos synchronizations of gene-
ralized van der-Pol systems with integral and fractional    
order were studied. In Song et al. (2010), a special kind of 



 
 
 
 
nonlinear chaotic oscillator, the Qi oscillator, was studied. 
All of the synchronization methods have their advantages 
and disadvantages. We should choose the perfect one 
according to the applied conditions. In this letter, we 
proposed two synchronization methods, the driven 
response synchronization method and the unidirectional 
coupling synchronization method. Both of them can make 
synchronization come true. 
 
 
FRACTIONAL CALCULUS 
 
Definition of fractional derivatives 
 
There are several different definitions for fractional 
derivatives of order q (q >0), the Grünwald-Letnikov, the 
Riemann-Liouville and the Caputo definitions are three 
most commonly used ones. For a wide class of functions, 
the Grünwald-Letnikov definition and the Riemann-
Liouville definition are equivalent. However, when model-
ing real-world phenomena with fractional differential 
equations (FDEs), the Caputo fractional derivative is 
more popular than the Riemann-Liouville definition of 
fractional derivative. 

The Caputo derivative is defined by 
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where  n−1 <q <n. 
 
For the initial conditions for the FDEs with the Caputo 
derivative are in the same form as integer-order deriva-
tives which have well understood physical meanings. 
Hence, we choose the Caputo derivative through this 
letter. For more details on the geometric and physical 
interpretation for FDEs of both the Riemann-Liouville and 

Caputo types. Hereafter, we use the notation 

q

q

d

dt  to 

denote the Caputo fractional derivative operator C Dq

. 
 
 
Numerical calculation of the fractional differential 
equations 
 
The approximate numerical techniques for FDEs have 
been developed in the literature which are numerically 
stable and can be applied to both linear and nonlinear 
FDEs. Recently, Deng (2009) also proposed an improved 
predictor-corrector approach in which the numerical 
approximation is more accurate and the computational 
cost is largely reduced. 

The fractional predictor-corrector algorithm is based on 
the analytical property that the following FDE: 
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It is equivalent to the Volterra integral equation (Diethelm 
and Ford, 2005): 
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Set h = T/N, tn = nh, n = 0, 1, …, N ∈ Z+. Then Equation 5 
can be discretized as 
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In which                 
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Therefore, the estimation error of this approximation is 
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Where p=min(2 ,1+q ). 
 
 
Stability theory 
 
Some stability theorems on fractional-order systems and 
their related results are introduced. The first theorem is 
given for commensurate fractional-order linear systems. 
 
 
Theorem 1 
 
The following linear system: 
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                               a.  x-y             b.  y-z 
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Figure 1. Two-dimensional state trajectory. 
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Where 0<q<1, 
nx R∈ , and 

n nA R ×∈ . The system is 

asymptotically stable if and only if 
arg( ) / 2qλ π>

is 
satisfied for all eigenvalues of matrix A. Also, this system 

is stable if and only if 
arg( ) / 2qλ π≥

 is satisfied for all 
eigenvalues of matrix A with those critical eigenvalues 

satisfying 
arg( ) / 2qλ π=

 having geometric multiplicity 

of one. The geometric multiplicity of an eigenvalue λ  of 
the matrix A is the dimension of the subspace of vectors 

v in which Av vλ= . 
 
 
Theorem 2 
 
The following commensurate fractional-order system: 
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Where 0<q<1, 
nx R∈ . The equilibrium points of system 

(9) are calculated by solving the following equation: 

( ) 0f x = . These points are locally asymptotically stable 

if all eigenvalues iλ
 of the Jacobian matrix /J f x= ∂ ∂  

evaluated at the equilibrium points satisfy: 

arg( ) / 2qλ π>
. 

 
 
MATHEMATICAL MODEL  
 
Observation of chaotic dynamics 
 
The double scroll of integral order hyper-chaos system 
can be described as follows. 
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We take initial value (x, y, z, w)=(0.1, 0.1, 0.1, 0.1). The 
two-dimensional state trajectory is shown in Figure 1. 
There are two opposite scroll modes in the  integral order 
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Figure 2. Three-dimensional state trajectory. 

 
 
 
hyper-chaos system through Figure 1. Now, let us 
introduce its fractional version as follows: 
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   (11) 
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Where 0<α≤1, and the system (11) is integral order 
system when α=1. We take initial value (x, y, z, w)=(0.1, 
0.1, 0.1, 0.1) Figure 2. (a, b, c) is the three-dimensional 
phase diagram whenα=0.97, α=0.98, α=0.99. 

We can know that system (11) is more and more closer 
to double scroll, when α is more and more close to 1. And 
α=0.98 is the transition value for the system (11) from 
single scroll to double scroll. 
 
 
Local stability 
 
The fractional system (11) has three equilibrias and their 
corresponding eigenvalues are: 
 

1 (0,0,0,0)E =
, 2 (0.01,0.37, 0.01,-0.36)E =

, 

3 (-0.01,-0.37, -0.01,0.36)E =
.         

 

For equilibria 1E
(0,0,0,0), system (11) is now linearized, 

the Jacobian matrix is defined as 
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To gain its eigenvalues, we let 
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These eigenvalues that corresponding to equilibrium 

1E
(0,0,0,0) are respectively obtained as follows: 
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For equilibria 2 (0.01,0.37, 0.01,-0.36)E =
, system (11) 

is now linearized, the Jacobian matrix is defined as: 
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To gain its eigenvalues, we let 
 

2 0I Jλ − =
 

 
These eigenvalues that corresponding to equilibrium 

2 (0.01,0.37, 0.01,-0.36)E =
 are respectively obtained 

as follows: 
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For equilibria 3 (-0.01,-0.37, -0.01,0.36)E =
, system 

(11) is now linearized, the Jacobian matrix is defined as: 
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These eigenvalues that corresponding to equilibrium 

3 (-0.01,-0.37, -0.01,0.36)E =
 are respectively 

obtained as follows: 
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It means that when q>0.97595 system (11) with 
commensurate fractional-order and above parameters 
has the necessary condition for exhibiting a chaotic 
attractor, which is useful for further numerical simulation. 
 
 
DRIVEN RESPONSE SYNCHRONIZATION  
 
In order to observe the two fractional hyper-chaos 
synchronization behavior, we take the fractional hyper-
chaotic system as the drive system. The subscript of four 
variable states was expressed as d. The drive system is 
defined as follows:                
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Response system is a subsystem that contains the state 
variables (y, z) (The subscript of state variables 
expressed as r. The response system is defined as 
follows: 
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Where u is the control input, in which 
( )r du z z= − −

. We 
define synchronization error as:  
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Subtracting system (10) from system (11) yields the 
following error system: 
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Theorem 1 
 
System (12) and system (13) can achieve 
synchronization through the synchronous controller. That 

is to say,
2lim 0

n
e

→∞
=

, 
3lim 0

n
e
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Proof: Formula 15 can be written as: 
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Figure 3. Synchronous state trajectory of system (13) 
and (14) and the error process of evolution curve. (a) 

Synchronous state trajectory of dy and ry  (b) 

Synchronous state trajectory of dz and rz  (c) Error 

evolution curves of 2e  and 3e . 
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So the two eigenvalues of A are 

1 1 3.87iλ = − +
, 2 1 3.87iλ = − −

. And then 

1,2arg( ) 0.58 / 2λ π απ= >
. So the zero point of error 

system (15) is asymptotically stable (Jumarie, 2001). 

That is to say：
2lim 0

n
e

→∞
=
，

3lim 0
n

e
→∞

=
. 

The above analysis shows that the fractional order 
drive system (Jumarie, 2001) and fractional response 
system (13) reach synchronization in the driven signal 

( dx
, dw

). Now we use the predictor-corrector algorithm 
method for numerical simulation. We take 0.01 as time 
step and (0.1, 0.1, 0.1, 0.1, 10, 10) for the initial state 

value ( dx
, dy

, dz
, dw

, ry
, rz

). We take α=0.99 in the 
simulation. The simulation result is shown in Figure 3a, b 
and c. 

We can know system (12) and (13) reach the 
synchronous state through the simulation result. It 
confirms that the driven response synchronization is 
effective. 
 
 
Synchronization via one-way coupling method 
 
We also take system (12) as the drive system. The 
response system is defined as follows: 
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Where 2k
, 3k

are the coupling strength. We define the 
synchronous error as follows: 
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Subtracting system (12) from system (17) yields the 
following error system: 
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Theorem 2 
 
System (12) and system (17) can achieve 
synchronization through the synchronous controller. 
 
Proof: Now let us take the Laplace transformation in both 

sides of Equation 19. Order 
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By the final-value theorem of the Laplace transformation,  

we have: 
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Figure 4. Synchronous state trajectory of system (13) and (18), and the error process of evolution curve. (a) 

Synchronous state trajectory of dx and rx (b) Synchronous state trajectory of dy and ry (c) Synchronous state 

trajectory of dz and rz  (d) Error evolution curves of ie (i=1,2,3,4).  

 
 
 

If it is assumed 3( )E s
 is limited, 1( )E s

 or 4 ( )E s
is 

limited. Thus, 
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By (22) and (23), so: 
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So we obtain the proof that systems (12) and (17) achieve 

synchronization through (24). 
We obtain the synchronous result through MATLAB 

simulation. We take 0.01 as time step and (1, 1, 1, 1, -10, 

10, 10, -1) for the initial state value ( dx
, dy

, dz
, dw

, 

rx
, ry

, rz
, rw

). We take α = 0.99 and 2k
= 3k

 = 10 in 
the simulation. The simulation result are shown in Figure 
4a, b and c. We can also know that system (12) and (17) 
reach the synchronous state through the simulation 
result. It confirms the effectiveness of one-way coupling 
method. 
 
 
DISCUSSION AND CONCLUSION  
 
First, we introduced a double scroll of integral order hyper-
chaotic system, which have two opposite scrolls and 
studied its phase trajectory map. And then the fractional 
order mathematical model was constructed. We also 
studied its phase trajectory  map  and  we  can  draw  the 
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conclusion; there are two opposite scrolls in the fractional 
order system when q≥0.98. At last, we achieve system 
synchronization through the driven response method and 
the one-way coupling method respectively. Theoretical 
proof and numerical simulation confirmed the effective-
ness of the two chaos synchronization methods.  

Partial state variables can achieve synchronization 
though driven response method. However, the one-way 
coupling method can make all of state variables achieve 
synchronization. The one-way coupling method is more 
advantageous than the driven response method. 
Comparing Figures 3c and 4d, we can draw conclusions; 
it has better performance for the controlled system with 
the one-way coupling method, for its small overshoot and 
short transition time; for industrial applications, the driven 
response method has its superiority. Therefore, we 
should try our best to use their respective advantages 
according to the different requirements. 

More and better synchronization method of fractional-
order chaotic systems should be studied. And control and 
synchronization of a class of fractional-order chaotic 
systems may be studied. Moreover, these synchroni-
zation methods may be realized and simulated by circuit. 
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