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Squeezing flow of a Casson fluid is considered between two parallel disks. Upper disk is taken to be 
impermeable but capable of moving towards or away from the lower fixed and porous disk. Governing 
equations are derived with the help of conservation laws combined with suitable similarity transforms. 
Homotopy analysis method (HAM) is then been employed to determine the solution to resulting 
ordinary differential equation. Numerical solution is also obtained using R-K 4 method and comparison 
shows an excellent agreement between both solutions. Effects of different physical parameters on the 
flow are also discussed with the help of graphs along with comprehensive discussions. 
 
Key words: Casson fluid, homotopy analysis method (HAM), squeezing flow, parallel disks, magneto 
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INTRODUCTION 
 
Squeezing flow between parallel disks has been an 
active field of research. Its biological and industrial 
applications have attracted many researchers towards its 
study. Numbers of efforts have been made to understand 
such types of flows in more depth. Motion of pistons is 
vital for running engines and machines. Squeezing flow 
under the influence of moving disk is also involved in 
nasogastric tubes and syringes. Better understanding of 
these flows leads us to more efficient and effective 
machines which may be used for both industrial and 
biological purposes.   

After the foundational directions provided by Stefen 
(1874), many researchers investigated the squeezing 
flow problems (Reynolds, 1886; Archibald, 1956; Grimm, 
1976; Wolfe, 1965; Kuzma, 1968; Tichy and Winer, 1970; 
Jackson, 1962; Hughes and Elco,  1962).  As  in  most  of 

the cases fluids under consideration are non-Newtonian 
hence due to complex nature of these fluids different 
mathematical models are used to study their flow. For 
blood type fluids Mrill et al. (1965) and McDonald (1974) 
depicted a most compatible model known as Casson 
fluid. 

Later Domairry and Aziz (2009) considered  the flow of 
an electrically conducting fluid between two parallel disks 
of which lower disk is permeable and fluid can enter or 
exit through it during suction or injection process; upper 
disk is taken to be  impermeable and it moves towards 
the lower disk with a certain time dependent velocity. 
They applied homotopy perturbation method (HPM) to 
approximate the solution. Due to inherent nonlinearities in 
Navier Stokes equations, exact solution in most of the 
cases   is   unlikely,   therefore,   different   approximation
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Figure 1. Schematic diagram of the problem. 

 
 
 
techniques are used to approximate the solution 
analytically (Abbasbandy, 2007a, b; Abdou and Soliman, 
2005a; Noor and Mohyud-Din, 2007; Abdou and Soliman, 
2005b; Asadullah et al., 2013; Noor et al., 2008; Mohyud-
Din et al., 2009; Nadeem et al., 2012). One of these 
analytical methods is homotopy analysis method (HAM) 
that has been effectively applied by different researchers 
to various nonlinear problems (Liao, 2003; Liao, 2004; 
Abbasbandy and Zakaria, 2008; Abbasbandy, 2007c; Tan 
and Abbasbandy, 2008; Hussain et al., 2012; Zeeshan et 
al., 2012; Hayat et al., 2003; Hayat et al., 2004; Khan et 
al., 2008; Hayat et al., 2009; Ellahi et al., 2010; Ellahi, 
2013; Ellahi, 2012; Ellahi et al., 2012; Hayat et al., 2006).  

In this paper, squeezed flow of magneto hydrodynamic 
(MHD) flow of a non-Newtonian Casson fluid is 
presented. The governing nonlinear partial differential 
equations are reduced to a much simpler nonlinear 
ordinary differential equation by employing a similarity 
transform. The reduced equation is solved by HAM and 
effects of emerging parameters are demonstrated 
graphically coupled with comprehensive discussions. A 
numerical solution is also carried out by using Runge-
Kutta fourth order method to check the validity of 
analytical solution. An excellent agreement among the 
solutions is observed.  
 
 
MATHEMATICAL ANALYSIS 
 
Consider MHD incompressible flow of a Casson fluid between 
parallel infinite disks separated by a distance 

    .1
21

atHth   A magnetic field proportional to 

  21

0 1 atB   is applied perpendicular to the disks. Based on the 

assumption of low Reynolds number, the induced magnetic field is 

neglected. The upper disk at  thz   is moving with velocity 

 
2

1
21

 ataH  towards or away from the stationary lower disk at 

.0z  The physical configuration is presented in Figure 1. 

Rheological equation of Casson fluid is defined as follows (Nadeem 
et al., 2012): 
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B  is dynamic viscosity of the non-Newtonian fluid, yp  is yield 

stress of fluid and   is the product of component of deformation 

rate with itself, that is, ,ijijee  where ije is the (i, j)th 

component of the deformation rate. 

We have chosen the cylindrical coordinates system  .,, zr   

Due to the rotational symmetry of the flow  0  , the 

azimuthal component v of the velocity  wvuV ,,  vanishes 

identically. Thus, the governing equation for unsteady two-
dimensional flow and heat transfer of a Casson fluid are: 

 

0
ˆˆˆ











z

w

r

u

r

u
                              (2) 

 

 
 

(2)

ˆ
ˆ

2
ˆˆˆ2ˆ

2
1

1
ˆˆ

ˆ
ˆ

ˆ
ˆ 2

2

2

2

2

2

2

utB
r

u

zr

u

z

u

r

u

rr

u

r

p

z

u
w

r

u
u

t

u






 

































































     (3) 



 

 

1790          Int. J. Phys. Sci. 
 
 
 





































































2

2

2

2

2

2 ˆˆ1ˆ1ˆ
2

ˆ1
1

ˆˆ
ˆ

ˆ
ˆ

ˆ

z

u

z

u

rr

w

rz

w

r

w

z

p

z

w
w

r

w
u

t

w


                                       (4) 

 
The boundary conditions are (Domairy and Aziz, 2009): 
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In the above equations, û  and ŵ  are the velocity components in 

the r- and z - directions respectively,   is density,   dynamic 

viscosity, p̂  pressure, v kinematic viscosity and w0 is the 

suction/injection velocity. 
Substituting the following transformations (Domairy and Aziz, 2009): 
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into Equations 2 and 3 and eliminating the pressure gradient from 
the resulting equations, we finally obtain 
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with the boundary conditions 
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Where S denotes the squeeze number, A the suction/blowing 
parameter and M is the Hartman number, defined as: 
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SOLUTION PROCEDURE 
 
Zero order deformation problem 
 
Following the procedure proposed by Liao (2003), it is forthright to 
choose following initial guess: 
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Linear operator is selected as: 
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Above operator satisfies the following property: 
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where )41( iCi  are the constants. Zero order deformation 

problem can now be constructed as follows (Noor et al., 2008): 
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where ]1,0[q  is an embedding parameter and h  is nonzero 

auxiliary parameter. Nonlinear operator is 
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For q=0 and q=0 we have 
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Substituting q=1  in above equation we obtain 
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mth-order deformation problem 
 
m times differentiation of zero order problem depicted by Equation 
13 and setting q=0 leads to 
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Figure 2. h curves  for the function f for different orders of approximations. 
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The general solution of Equation 19 is 
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mf represents the special solution; also 
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Above higher order solution can be substituted to Equation 18 to 
obtain the final solution. 
 
 
Convergence of the solution 
 
Obtained series solution given by Equation 18 contains an auxiliary 

parameter h . As pointed out by Liao (2003), this parameter is the 

key to control convergence of series solution. Acceptable range of 

h  can be determined by identifying the line segment of so called 

h -curves which is parallel to h  axis. In our particular problem this 

can be achieved by seeing the range in which )1(''f  bears the 

same magnitude for any value of h  within that range. Figure 2 is 

displayed to demonstrate convergence region for two orders of 
approximations namely 10th and 14th. It clearly shows that the 

acceptable region of h  is to be between -2.4 and 0.4.  

 
 
RESULTS AND DISCUSSION 
  

Acceptable range for auxiliary parameter h  has been 

discussed in previous section. In our analysis and 

discussions we use 9.0h  as an optimal value of h . 

After ensuring the convergence of series solution our 
concern now is to see the influences of suction/blowing 
parameter A, squeeze number S, Hartmann number M 

and Casson fluid parameter   on velocity is examined. 

For convenience, we divide our discussions into two 
parts; one dedicated to investigate the upshots on 

varying physical parameter for the case suction ( 0A ) 

and the other one describes the same effects for the case 

of blowing ( 0A ). 

 
 
Suction case 
 
Effects of increasing suction at lower disk on both axial 
and radial  velocities  are  displayed  in  Figures  3  and  4  
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Figure 3. Effects of A on axial velocity. 

 
 
 

 
 

Figure 4. Effect of A on radial velocity. 

 
 
 
respectively. It is evident that increasing value of A 
results in higher absolute values of both the velocities. As 
increasing suction allows more fluid to flow near the lower 
disk therefore a decrease in boundary layer thickness is 
expected. 

Influences of squeeze parameter S on axial and radial 
velocities are displayed in Figures 4 and 5 respectively. 
Here S<0 corresponds to the movement of upper disk 
towards lower one. On the other hand, S>0 describes 
away movement of the same disk. It can be seen from 
Figure  5   that   for   squeezing   motion   of   upper   disk 

combined with suction axial velocity near the center is 
increased while for dilating motion a decrease in axial 
velocity is observed. From Figure 6 one can see the 
behavior of radial velocity for same variations in S. It is 
evident for expanding motion; an accelerated radial flow 
is observed near the upper disk however this trend 
changes gradually as we move away from it. Somewhere 
near the center this trend gets converted into an opposite 
one; that is, from that point to lower disk a delayed 
motion is observed. For contracting motion of upper disk 
combined with suction at lower disk effects  of  increasing  
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Figure 5. Effects of S on axial velocity. 

 
 
 

 
 

Figure 6. Effect of S on radial velocity. 

 
 
 
absolute values of S are quite opposite to the case of 
expanding motion. In this case, radial velocity near upper 
disk decreases while near the lower disk an accelerated 
radial flow is observed.  

Graphical results describing flow behavior under 
increasing Hartmann number M are displayed in Figures 
7 and 8. From Figure 7, it can be seen that the axial 

velocity )(f  is a decreasing function of M. As apparent 

from Figure 8, absolute value of radial velocity )(' f  

increases near the disks while in center, it behaves 
oppositely. It is also worth mentioning that effect near 
upper disk is more prominent as compared to lower one. 
Figures 9 and 10  respectively  are  dedicated  to  display 

behavior of axial and radial velocity for increasing Casson 

parameter  . Axial velocity is a decreasing function of   

as shown in Figure 9. Effects of   on axial velocity are 

more visible in central region as compared to the area 
near disks. Furthermore,    gives us the flow of 

viscous fluid. Figure 10 shows that the radial velocity 
near lower disk decreases with rising  . However, after 

moving some distance away from the lower disk this 
behavior changes into an opposite one; that is, after 

4.0  we observe an accelerated radial flow. One may 

also see that effects of   near the disks are very slight 

as compared to the region far from them. 
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Figure 7. Effects of M on axial velocity. 

 
 
 

 
 

Figure 8. Effect of M on radial velocity. 

 
 
 

 
 

Figure 9. Effects of    on axial velocity. 
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Figure 10. Effect of  on radial velocity. 

 
 
 

 
 

Figure 11. Effects of A on axial velocity. 

 
 
 
Blowing case 
 
Here we discus influences of involved physical parameter 
in the case when blowing occur at the lower disk. Figures 
11 and 12 declare that the influence on increasing 
injection leads to increased absolute values of both axial 
and redial velocities. Figures 13-18 show that the effects 

of S, M and   on both axial and radial flow are opposite 

in blowing case as compared to the ones obtained for 
suction case. Same problem is solved numerically by 
using a well-known RK-4 method. Comparison for is 
presented  in  Table  1.  It  can  be   observed   that   both 

numerical and analytical solutions are in excellent 
agreement.  

 
 
Conclusion 

 
Squeezing flow between parallel disks is presented. 
Homotopy analysis method (HAM) has been employed to 
obtain analytical solution to the problem. Influences of 
emerging flow parameters are discussed in detail with the 
help of graphs. It is also concluded that the effects of 
physical parameter on axial and redial velocities are quite  
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Figure 12. Effect of A on radial velocity. 

 
 
 

 
 

Figure 13. Effects of S on axial velocity. 

 
 
 

 
 

Figure 14. Effect of S on radial velocity. 
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Figure 15. Effects of M on axial velocity. 

 
 
 

 
 

Figure 16. Effect of M on radial velocity. 

 
 
 

 
 

Figure 17. Effects of   on axial velocity. 
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Figure 18. Effect of  on radial velocity. 

 
 
 

Table 1. Comparison of HAM and numerical solutions for .5.0,9.0,5.0,0.1,0.2  hMAS  

 

   f HAM Numerical  'f HAM Numerical 

0 1.000000 1.000000 0 0 

0.1 0.984012 0.984012 -0.303368 -0.303368 

0.2 0.942321 0.942321 -0.516753 -0.516753 

0.3 0.883192 0.883192 -0.654099 -0.654099 

0.4 0.813695 0.813695 -0.725515 -0.725515 

0.5 0.740051 0.740051 -0.737995 -0.737995 

0.6 0.667911 0.667911 -0.695962 -0.695962 

0.7 0.602598 0.602598 -0.601667 -0.601667 

0.8 0.549306 0.549306 -0.455454 -0.455454 

0.9 0.513283 0.513283 -0.255919 -0.255919 

1.0 0.500000 0.500000 0 0 

 
 
 
opposite in the cases of suction to the blowing. A 
numerical solution using well known R-K 4 method has 
also been obtained for the sake of comparison. It is found 
that the results agree exceptionally well. 

 
 
REFERENCES 

 
Abbasbandy S (2007a). The application of homotopy analysis method 

to solve a generalized Hirota-Satsuma coupled KdV equation, Phys. 
Lett. A. 361:478–483. 

Abbasbandy S (2007b).  A new application of He's variational iteration 
method for quadratic Riccati differential equation by using Adomian's 
polynomials, J. Computational Appl. Math. 207:59-63. 

Abbasbandy S (2007c). Numerical solutions of nonlinear Klein-Gordon 
equation by variational iteration method, Int. J. Num. Methods Eng. 
70:876-881. 

Abbasbandy S, Zakaria FS (2008). Soliton solutions for the fifth-order K-
dVEquation with the homotopy analysis method, Nonlinear 
Dynamics, 51:83–87. 

Abdou MA, Soliman AA (2005a). New applications of variational 
iteration method, Physica D. 211(1-2):1-8. 

Abdou MA, Soliman AA (2005b). Variational iteration method for solving 
Burger's and coupled Burger's equations. J.Computational Appl. 
Math. 181:245-251. 

Archibald FR (1956). Load capacity and time relations for squeeze 
films. J. Lubrication Technol. 78:A231–A245. 

Asadullah M, Khan U, Ahmed N, Manzoor R, Mohyud-Din ST (2013). 
Int. J. Modern Math. Sci. 6:92-106. 

Domairy G, Aziz A (2009), Approximate Analysis of MHD Squeeze Flow 



 

 

 
 
 
 

between Two Parallel Disks with Suction or Injection by Homotopy 
Perturbation Method, Mathematical Problems in Engineering, article 
ID/2009/603916. 

Ellahi R (2012). A Study on the Convergence of Series Solution of Non-
Newtonian Third Grade Fluid with Variable Viscosity: By Means of 
Homotopy Analysis Method, Adv. Math. Phys. Article ID 634925, 11 
pages. 

 Ellahi R (2013). The effects of MHD and temperature dependent 
viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical 
solutions, Appl. Math. Modeling, 37:1451-1467.  

Ellahi R, Hayat T, Mahomed FM, Zeeshan A (2010). analytical solutions 
for MHD flow in an annulus, Commun. Nonlin. Sci. Numer. Simul. 
15:1224-1227. 

Ellahi R, Raza M, Vafai K (2012).Series solutions of non-Newtonian 
nanofluids with Reynolds’ model and Vogel’s model by means of the 
homotopy analysis method, Mathe. Computer Modelling, 55:1876–
1891. 

Grimm RJ (1976). Squeezing flows of Newtonian liquid films: an 
analysis includes the fluid inertia. Appl. Sci. Res. 32(2):149–166,  

Hayat T, Ellahi R, Ariel PD, Asghar S (2006). Homotopy Solution for the 
Channel Flow of a Third Grade Fluid, Nonlinear Dynamics, 45:55–64. 

Hayat T, Ellahi R, Asghar S (2004). Unsteady periodic flows lows of a 
magnetohydrodynamic fluid due to noncoxial rotations of a porous 
disk and a fluid at infinity, Math. Computer Modelling, 40:173-179. 

Hayat T, Ellahi R, Mahomed FM (2009). The Analytical Solutions for 
Magnetohydrodynamic Flow of a Third Order Fluid in a Porous 
Medium, Zeitschriff Naturforsch, 64a:531-539. 

Hayat T, Mumtaz S, Ellahi R (2003). MHD  unsteady periodic flows due 
to non-coaxial rotations of a disk and a fluid at infinity, Acta 
Mathematica Sinica, 19:235-240. 

Hughes WF, Elco RA (1962). Magnetohydrodynamic lubrication flow 
between parallel rotating disks. J. Fluid Mechanics, 13:21–32. 

Hussain A, Mohyud-Din ST, Cheema TA (2012). Analytical and 
Numerical Approaches to Squeezing Flow and Heat Transfer 
between Two Parallel Disks with Velocity Slip and Temperature 
Jump, Chinese Phys. Lett. 29:114705.  

Jackson JD (1962). A study of squeezing flow, Appl. Sci. Res. A. 
11:148–152. 

Khan I, Ellahi R, Fetecau C (2008). Some MHD Flows of a Second 
Grade Fluid through the Porous Medium.  J. Porous Media, 11:389-
400. 

Kuzma DC (1968). Fluid inertia effects in squeeze films. Appl. Sci. Res. 
18:15–20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Ahmed et al.          1799 
 
 
 
Liao SJ (2003). Beyond perturbation: introduction to the Homotopy 

Analysis Method, CRC Press, Boca Raton, Chapman and Hall, 2003. 
Liao SJ (2004). On the homotopy analysis method for nonlinear 

problems, Appl. Math. Computation, 147:499–513. 
McDonald DA (1974). Blood Flows in Arteries, 2nd ed. Arnold, London  
Mohyud-Din ST, Noor MA, Waheed A (2009). Variation of parameter 

method for solving sixth-order boundary value problems, 
Communication Korean Math. Soc. 24:605-615. 

Mrill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW (1965). 
Pressure flow relations of human blood hollow fibers at low flow 
rates. J. Appl. Physiol. 20:954–967.  

Nadeem S, Haq UlR, Lee C (2012).   MHD flow of a Casson fluid over 
an exponentially shrinking sheet, Scientia Iranica, 19:1150-1553. 

Noor MA, Mohyud-Din ST (2007). Variational iteration technique for 
solving higher order boundary value problems, Appl. Math. 
Computation, 189:1929-1942. 

Noor MA, Mohyud-Din ST, Waheed A (2008). Variation of parameters 
method for solving fifth-order boundary value problems. Appl. Math. 
Infor. Sci. 2:135 -141. 

Reynolds O (1886). On the theory of lubrication and its application to 
Mr. Beauchamp Tower’s experiments, including an experimental 
determination of the viscosity of olive oil, Philosophical Transactions 
of the Royal Society of London, 177:157–234. 

Stefen MJ (1874). Versuch¨ Uber die scheinbare adhesion, 
Sitzungsberichte der Akademie der Wissenschaften in Wien. 
Mathematik-Naturwissen, 69:713–721. 

Tan Y, Abbasbandy S (2008). Homotopy analysis method for quadratic 
Riccati differential Equation, Communications Nonlinear Sci. Num. 
Simulation, 13:539–546. 

Tichy JA, Winer WO (1970). Inertial considerations in parallel circular 
squeeze film bearings, J. Lubrication Technol. 92:588–592. 

Wolfe WA (1965). Squeeze film pressures. Appl. Sci. Res. 14:77–90. 
Zeeshan A, Ellahi R, Siddiqui AM, Rahman HU (2012). An investigation 

of porosity and magnetohydrodynamic flow of non-Newtonian 
nanofluid in coaxial cylinders, Int. J. Phys. Sci. 7(9):1353–1361. 

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WnZJYoAAAAJ&citation_for_view=2WnZJYoAAAAJ:d1gkVwhDpl0C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WnZJYoAAAAJ&citation_for_view=2WnZJYoAAAAJ:d1gkVwhDpl0C

