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This study considers the stability function of a high order integrator analysed by Onianwa and 
Aashikpelokhai (2007) for the sole purpose of having a sound knowledge of the way in which the 

coefficients of the stability function 
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 is distributed. 

The study enables us to draw the conclusion as an alternative proof that ),( vus  lies in the unit ball in 

R
3
. It also studied and established that the integrator is consistent and convergent.  

 
Key words: Consistency, convergence, open unit ball in R

3
. 

 
 
INTRODUCTION 
 
The researchers considered the initial value problem 
 

 Rybaxyayyxfy ∈∈==′ },,[,)(),,(
0                  (1) 

 
whose solution may be stiff and have singularities, but 
with continuous derivative of high order. This paper deals 
with the coefficient distribution of the stability function of a 
high order rational integrator. The methods in this class of 
integrators are L-stable; for this high order, the stability 
function s(u,v), given by (10) lies in the unit ball in R

3
.  

Consequently, the researchers study the way the 
coefficients of the underlying numerator A(u,v)+iB(u,v) 
and denominator C(u,v)+iD(u,v) are distributed. The 
consistency and convergence of the integrator are also 
examined. 
 
 
PROPERTIES OF THE INTEGRATORS: (CONSISTENCY 
AND CONVERGENCE) 
 
Generally, the concept of consistency is very important in 
the sense that it controls the magnitude of the local 
truncation error committed at every  integration  step  and 
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is also crucial to the convergence of the method. 
Convergence is an important tool in multistep methods 

in that it guarantees that by using a sufficiently small step 
and accurate computation, the numerical solution can be 
made arbitrarily close to the true solution. It is also a 
desirable property any numerical integration formula must 
posses. Consequently, Dahlquist (1956, 1959) esta-
blished the following theorems which will guide numerical 
analysts in the formulation of new integration formulas. 

 
 
Theorem 1 

 

The multistep method ∑∑
=

++
=

=
k

oj
jnjjn
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 is 

convergent if and only if it is consistent and zero stable. 

 
 
Theorem 2 

 
A zero stable multistep method (Theorem 4) is at best of 

the order, P = 





+

+

evenkif2,k

oddkif1,k
 

 
However, the proof of  these  theorems  is  available  in  



 
 
 
 
the original papers of Dahlquist and Henrici (1962).  
Ideally, one will normally wish for a k – step multistep 
methods to be of highest possible order, but these goals 
are not always reachable due to Dahlquist barrier. 

Thus according to Fatunla (1988), a one - step method 

);;(1 hyxhyy nnnnn φ+=+  where );,( hyxφ  is 

the increment function and nh , the mesh size is said to 

be convergent if for an arbitrary initial vector y0 and an 

arbitrary point x ∈ [a, b], the global error; 

 
En+1 = yn+1 – y(xn+1) 

  (2) 
                               
Satisfies the following relationship: 
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Provided x is always a mesh point. 
 
 
Theorem 3  
 
Consistency and convergence 
 
The numerical integration formula given by  
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where, 
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is convergent. 

 
 
Proof 
 
Recall that a one-step numerical integrator 

),,(1 nnnnn hyxhyy φ+=+  is convergent ⇔ it 

is consistent (Lambert, 1976). 

Now if we assume that nyP =0  and for the case k = 

12 in (9), we have by considering   
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Re-arranging (6), we have  
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Taking limits of (7) as 0→h , we have 
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Which implies that 

),()0,,(
)1(

nnnnn yxfyyx ==φ . 

This establishes the proof.  Hence the study concludes 
that the method is consistent.  This also agrees with 
Lambert (1973), Dahlquist (1963), Fatunla (1988) and 
Aashikpelokhai (1991), consequently stable and 
convergent as in Henrici (1962). 

 
 
ANALYSIS OF THE STABILITY FUNCTION  

 
Stability is a vital element in every numerical computation 
of any integrator. Lambert (1976) opined that stability 
implies the existence of a positive h* such that for h 

∈(0,h*), stable propagation of error will occur. Because of 
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the difficulty in analyzing rational functions as compared 
with the linear functions, very little theoretical results are 
available in the case of rational integration methods. 

By and large, one major concern is the stability of 
results at poles of singular problems.  Therefore, some of 
these schemes are those of Lambert and Shaw (1965), 
Lambert (1974), Luke and Wimp (1975), Niekerk (1987), 
Fatunla (1982, 1986, 1994), Fatunla and Aashikpelokhai 
(1994) and Otunta and Ikhile (1996). 

Our study on the stability function in this paper have 
been restricted to the case k = 12. The work confirmed 
the difficulties in analyzing rational integrators (Fatunla, 
1982, 1988; Lambert, 1973, 1995). However, the analysis 
of the stability function shall be restricted to the u-v plane.   

Now considering yy λ=′  and substituting into the 

formula of the integrator, we obtain 
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This is the stability function. Next we designate the 

stability function by )(hs and as usual set 

ivuh += leading us to the stability function as: 

 
 1

12

0
)(

12
)!112.2()1(

11

0
)(

11
)!112.2(),(

−

∑
=

+−−−∑
=

+−−=
























































r

rivu
r

rr

r

rivu
r

rvus

                                                                            (10) 
 
 
Theorem 4 

 
Given the stability function in (10); 
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Then ),( vus , lies in the unit ball whenever u < 0. 

 
 

Proof 
 

Consider 

),(),(
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This in turn holds 
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We then obtain by isolating the real parts from the 
imaginary parts in (11) as follows; 
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Next is 
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Similarly, we set 

 
 

),(),(

),(),(

vuIvuD

vuRvuC

m

e

ψ

ψ

=

=

 
 
 

 

where ∑
=

+







−−−=

12

0

12

)()!112.2()1(),(
r

r

r

r
ivurvuψ  

 
We then obtain by isolation all the real parts from the 
imaginary parts, we have 
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From the aforementioned, we have 
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where Cvu =),(1ψ represents the real part while 

Dvu =),(2ψ represents the imaginary part. Therefore, 

by squaring and adding the terms in (12 to 15), we obtain 
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Whenever u < 0. Indeed the terms involving the invoking 
of u < 0 are the terms in 

)),(),((),(),((
2222

vuDvuCvuBvuA +−+  which 

are positive, the rest yield < 0 independent of the sign of 
u (Proof established). 
 
 
Conclusion  
 
From our study, we observe that the characteristics 
bordering on the consistency, convergence and stability 
of the integrator was found to be of the desired type and 

that ),( vus was equally found to lie in the unit ball 

whenever u < 0. 
It was observed that from the expansion that a 

sequence of alternating signs of the various coefficients 
of the parameters A (u, v), B (u, v), C (u, v) and D (u,v) 
was obtained.  Also the pairs of A (u, v), C (u, v) and B 
(u, v), D (u, v) took even and odd coefficients, 
respectively. 
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