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In this paper, a new approach based on the energy balance method is proposed for free vibration 
analysis of a cracked cantilever beam by taking into account both the structural damping and the 
damping due to the crack. Also, by taking into account the effect of opening and closing the crack 
during the beam vibration, the stiffness changes at the crack location are considered to be a nonlinear 
amplitude-dependent function which causes the frequencies and mode shapes of the beam to vary 
continuously with time. The results show that neglecting the effects of structural damping and 
nonlinear behavior of the crack will be a source of considerable error in obtaining the dynamic 
response and vibration characteristics of the cracked beam. In order to validate the results obtained 
through the proposed method, some experimental test have been conducted. 
 
Key words: Damped vibration, nonlinear fatigue crack, structural damping, amplitude-dependent local stiffness, 
superharmonic, time-dependent mode shape. 

 
 
INTRODUCTION 
 
Beams are one of the most commonly used elements in 
structures and machines, and fatigue cracks are the main 
cause of beams failure. Thus, in order to develop the 
nondestructive inspection and health monitoring methods, 
dynamic behavior and modeling of the cracked structures 
have been studied by many investigators. Closing effect 
of the crack during the vibration causes the stiffness of 
the structure to vary continuously with time and amplitude. 
Therefore, the nonlinear effects appear in the dynamic 
response and it affects modal parameters of the structure. 
In order to avoid difficulties resulting from the closing 
effect of the crack, many researchers have assumed that 
the crack remains always open during the vibration 
(Caddemi and Calio, 2009; Mazanoglu et al., 2009; 
Orhan, 2007). Cornwell et al. (1999) used strain energy 
method to detect and locate damage in plate-like 
structure. The method requires the mode shapes of the 
structure before and after the damage. Indeed, this 
method is the development of one-dimensional strain 
energy method by Stubbs et al. (1995) to two-
dimensional structures. Yang et al., (2001) studied the 
influence of open cracks on the vibration behavior of a  
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beam by using strain energy variation around the crack 
for single-and double-cracked beams. They used 
Galerkin’s method to determine beam modes and 
frequencies. Swamidas et al. (2004) developed an open 
crack model using energy formulations and fracture 
mechanics considerations. Galerkin’s method is utilized 
to solve for natural frequencies of uncracked and cracked 
beams. In order to taking into account the closing effect 
of the crack on the vibrational behavior of the beam, 
some researchers considered a contact stiffness which is 
added to the initial stiffness at the crack location in half 
period of the beam vibration (Kisa and Brandon, 2000; 
Benfratello et al., 2007; Foong et al., 2007). Such a 
model takes into account only fully open and fully closed 
cases of the crack and ignores partially open or closed 
situations. Bovsunovsky and Surace (2005) and 
Bovsunovskii et al. (2006) used finite element method to 
study the influence of the crack parameters on the 
system damping by bilinear stiffness model. They used a 
proportional damping model to describe the damping 
nature of the system. They claimed that nonlinear effects 
are more sensitive to the presence of a crack than the 
change in natural frequencies, or mode shapes. In order 
to take into account the effects of partial crack closure, 
Abraham and Brandon (1995) have simulated the 
changes in stiffness at the location of the breathing  crack  
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by employing many terms of the Fourier series and 
ignoring the damping effects of the system. They 
assumed that the beam stiffness varies between the 
stiffness of the beam with the open crack and that of the 
intact beam. Cheng et al. (1999) have considered a 
single degree of freedom model with time-varying stiff-
ness to study the forced vibration behavior of a cracked 
cantilever beam. The time-varying stiffness of the beam 
is modeled as a simple periodic function. They obtained 
the forced vibration response of the cracked beam nume-
rically using the Runge-Kutta method. Zhang and Testa 
(1999) have investigated closure effects on the vibration 
response of a fatigue cracked steel T-beam, 
experimentally.  

Panteliou et al. (2001) considered a thermoelastic 
mechanism of energy dissipation in a cracked body. In 
another work, Curadelli et al. (2008) employed changes 
in system damping due to the damage for structural da-
mage identification using the wavelet transform. Filipiak 
et al. (2006) studied damping effect on beam vibration 
forced by impact and demonstrated that influence of the 
air on the beam damping is negligible. It is worth noting 
that the modeling of the nonlinear behavior of a 
complicated structure due to the crack is far from 
straightforward.  

Therefore, establishing an analytical model for vibration 
analysis of a cracked real structure by considering the 
structural damping and the nonlinear behavior of the 
breathing crack due to continuous changes of local 
stiffness and local damping at the crack location during 
the opening and closing the crack is very complex task. 
Thus, in the literature in this area, many researchers 
used the beam like structure to show dynamical behavior 
of the cracked structures. 

In this work, a new approach is developed for damped 
free vibration analysis of a beam with a fatigue crack, 
considering both the distributed structural damping and 
the damping due to presence of the crack. It is assumed 
that the crack behaves as a viscous damper. Also, a 
nonlinear amplitude-dependent function is developed for 
modeling the local stiffness changes at the crack location 
during the vibration. In addition, by considering the expe-
rimental tests, it is shown that the local stiffness at the 
crack location varies continuously between two extreme 
values corresponding to the fully open and fully closed 
cases of the crack.  

These extreme values are determined by the experi-
mental tests. Damped free vibration response of the 
cracked beam and its frequency spectrum is obtained by 
the proposed method, and the results are compared with 
experimental tests results.  

The appearance of the superharmonic component in 
the frequency spectrum implies the nonlinear behavior of 
the cracked beam. In addition, by employing the 
proposed method, the variation of the frequency ratio 
(that is, the ratio of the fundamental frequency of the 
cracked beam to that of the intact beam) against the 
crack location ratio for a  given  crack  depth  ratio  is  plotted  

 
 
 
 
and the obtained results are compared with those 
obtained from the linear model (open crack model) and 
the experimental ones. The comparison shows a good 
accuracy of the proposed method. 
 
 
MATHEMATICAL MODELING OF THE BEAM WITH A 
FATIGUE CRACK 
 

A uniform cantilever cracked beam with a length of L  is 
shown in Figure 1a. The crack is modeled as a fatigue 
one with nonlinear stiffness (Figure 1b). Local stiffness at 
the crack location varies with time due to the crack 
opening and closing during the beam vibration. Therefore, 
the dynamic behavior of the beam is affected by the 
stiffness variations at the crack location. For the sake of 
simplicity, Cheng et al. (1999) used a SDOF model for 
the cracked beam. They considered the equivalent 
stiffness of the cracked beam as a time-varying harmonic 
function: 
 

[ ]1
( ) ( ) 1 cos( )

2o c oK t K K K tω= + − +                      (1)                                

 
where ω  is the fundamental frequency, ck  is the 

equivalent stiffness of the intact beam and ok  is the 
equivalent stiffness of the cracked beam when the crack 
is fully open.  

In this research, unlike the abovementioned model, the 
cracked beam is considered as a continuous system and 
the local stiffness changes at the crack location due to 
the beam vibration is considered as an amplitude-
dependent function. 

Assume that cA  and oA  to be the amplitudes of a 
specified point on the cracked beam (e.g. free end of the 
beam) corresponding to the fully closed and fully open 
situations of the crack, respectively. Also, assume that 

ck  and ok  to be the local stiffness of the beam at the 

crack location corresponding to the amplitudes of  cA  

and oA , respectively. In this case, during the oscillation 
of the beam at its first mode, the local stiffness at the 
crack location will vary continuously in the range of   
 

c ok k k≤ ≤ .  
 
Here, by adapting Equation (1) for local stiffness, it is 
assumed that the local stiffness change at the crack 
location during the vibration is a harmonic function of the 
amplitude of the cracked beam, as: 
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Figure 1.  (a) Cantilever beam with a breathing crack; (b) a nonlinear stiffness model for the breathing crack on a 
cantilever beam. 

 
 

 
 
Figure 2. The variation of bending moment against the local slope difference 
at the crack location for a steel cracked beam with a cross-sectional area of 

23.9 6.4 mm× and a crack depth ratio of 0.36α = obtained through the 
experimental tests (• ) and the curve fitted to the experimental test points ( − ). 

 
 
 
where, A is the amplitude of the beam. 
 
Unlike Equation (1) which models the cracked beam as a 
SDOF system with a time-varying equivalent stiffness, 
Equation (2) introduces the local stiffness changes at the 
crack location in terms of the amplitude of the cracked 
beam. By having ck and ok experimentally, and corres-

ponding amplitudes, cA  and oA , Equation (2) gives the 

local stiffness at the crack location, Ak , as a function of 

instant beam amplitude A . 
 
 
EXPERIMENTAL MEASUREMENTS OF THE LOCAL 
STIFFNESS AT THE CRACK LOCATION 
 
In this research, a servo hydraulic universal dynamic test 
machine (Zwick/Roell Amsler HA250) is used for initiating  

and propagating the fatigue crack on steel beams. In 
order to obtain the local stiffness of the beams at the 
crack location, they are subjected to bending moments. 
Then, the local difference between the slopes of lines 
normal to the two faces of the crack corresponding to the 
applied bending moment is obtained by measuring the 
angle between laser light rays originated from the two 
sides of the crack.  

Figure 2 shows a typical test results. This figure 
illustrates the variation of the bending moment, sM , 

against the local slope difference at the crack location,θ , 
for a steel beam with a cross-sectional area of 

23.9 6.4 mm×  and crack depth ratio of 0.36
a
h

α = = . 

The slope of the sM θ−  curve at any θ  shows the local 
stiffness of the beam at the crack location. That is. 
(Cheng et al., 1999; Newman and Elber, 1988): 
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sdM
k

dθ
=                                                                   (3)                                           

 
By examining the Figure 2 with close attention, it is 
observed that the curve sM θ−  consists of two straight 
lines with two different slopes which are connected to 
each other smoothly by a transition curve. The line at the 
left side of the transition curve corresponds to the fully 
open case of the crack which has a slope of 

.
1954.2o

N m
k

rad
= . The slope of the line at the right side 

which corresponds to the fully closed case of the crack is 
2.85c ok k= . On the other hand, the local stiffness at 

the location of a fully open crack is given by (Chondros et 
al., 1998): 
 

( )2

1
( )6 1o

EI
k

Jh απ ν
=

−
                                         (4)                                                  

 
where ( )J α  is the dimensionless local compliance 
function which is given by: 
 

2 3 4 5 6

7 8 9 10

( ) 0.6272 0.4533 4.5948 9.9736 20.2948

            33.0351 47.1063 40.7556 19.6

J α α α α α α
α α α α

= − + − +

− + − +
   (5)  

 
Using Equation (4), 0k  for the mentioned beam is 
obtained 
 

0

.
2061.8

N m
k

rad
= ,  

 
which differs 5.2%  from the experiment. 
 
Furthermore, Figure 2 demonstrates that the vibrational 
behavior of a beam with a fatigue crack depends on the 
state of the crack opening, and the degree of opening 
and closing of the crack depends on the vibration 
amplitude of the beam.  

When the beam free vibration amplitude is high enough, 
the crack is alternatively fully open and fully closed, 
therefore, the local stiffness at the crack location will vary 
continuously between the two extreme values corres-
ponding to the fully open and fully closed cases of the 
crack.  

The beam vibration amplitude decreases gradually with 
time due to the system damping, therefore, the crack 
opens and closes partially and the range of local stiffness 
variation becomes smaller and smaller, so by decreasing 
the vibration amplitude, the local stiffness approaches to 
a constant value.  

 
 
 
 
THE GOVERNING EQUATION OF MOTION FOR THE 
CRACKED BEAM WITH A NONLINEAR FATIGUE 
CRACK MODEL 
 
Free vibration of a beam is significantly affected by the 
structural damping. Thus, in order to enhance the 
accuracy of the proposed method, distributed structural 
damping effect is considered. Also, local stiffness at the 
crack location is modeled as a nonlinear massless 
torsional spring and its stiffness variations due to opening 
and closing the crack during the beam vibration cause 
the mode shapes and natural frequencies to vary with 
vibration amplitude. In addition, the local damping effect 
due to opening and closing the crack is considered in 
obtaining the dynamic response of the cracked beam but 
its influence on the mode shapes is neglected. Therefore, 
the governing equations of motion for the two segments 
of the beam are as follows: 
 

1, 1, 1, 0( , ) ( , ) ( , ) 0                 0xxxx s xxxxt ttEIW x t c IW x t mW x t x L+ + = ≤ ≤     (6a)                
 

2, 2, 2, 0( , ) ( , ) ( , ) 0              xxxx s xxxxt ttEIW x t cIW x t mW x t L x L+ + = ≤ ≤       (6b)                   
 

where E is the Young's modulus, I is the beam cross-
sectional area moment of inertia, m is the mass per unit 
length of the beam, sc is the structural damping coeffi-

cient  and, 1W and 2W  are the deflection functions of the 
beam at the left and right sides of the crack, respectively.  
 
As mentioned before, because the local stiffness of the 
beam at the crack location is an amplitude-dependent 
function, therefore, the beam natural frequencies and its 
mode shape will vary continuously according to the 
vibration amplitude. Thus, the vibration response of the 
beam can be considered as follows: 
 

1 1 0( , ( )) ( ) ( , ( ))             0W x A t A t x A t x Lφ= ≤ ≤   (7a)                    
 

2 2 0( , ( )) ( ) ( , ( ))           W x A t A t x A t L x Lφ= ≤ ≤    (7b)                                     
 

where, ( )A t is the displacement of a specified point on 

the beam and 1( , ( ))x A tφ and 2 ( , ( ))x A tφ  are 
amplitude-dependent eigen functions of the beam at the 
right and left side of the crack, respectively. Substituting 
Equations (7a) and (7b) into Equations (6a) and (6b), one 
obtains: 
 

1 1 2 3 4( , ( )) cosh sinh cos sinx At c x c x c x c xφ λ λ λ λ= + + +              (8a)  
  

2 5 6 7 8( , ( )) cosh sinh cos sinx At c x c x c x c xφ λ λ λ λ= + + +          (8b)                        
 

where 
2

4 m
EI
ωλ = .ω  is the circular frequency and ic , 



 
 
 
 

1,2,...,8i =  are unknown constants to be determined 
from the boundary conditions.  
 
It is worth noting that λ  and ω  are time-dependent 
variables. The boundary conditions at both ends are: 
 
at 0x = : 1(0, ) 0Aφ = , 1, (0, ) 0x Aφ =                          (9)                                                  

 
at x L= : 2, ( , ) 0xxEI L Aφ =  , 2, ( , ) 0xxEI L Aφ =       (10)                                                         

 
At the crack location, 0x L= , the matching conditions 
are as follows: 
 
, 1, 0 2, 0( , ) ( , )xxx xxxL A L Aφ φ= 1, 0 2, 0( , ) ( , )xx xxL A L Aφ φ=  , 

1 0 2 0( , ) ( , )L A L Aφ φ=                                                   (11) 
 

1, 0 2, 0 1, 0( , ) ( , ) ( , )xx A x xEI L A k L A L Aφ φ φ� �= −� � 

 
Equations (8a) and (8b) and the boundary and matching 
conditions (Equations (9) to (11)) constitute an Eigen 
value problem with time-varying eigenvalues and 
eigenfunctions. The characteristic determinant is: 
 

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 cosh sinh -cos sin
0 0 0 0 sinh cosh sin -cos

cosh sinh cos sin cosh sinh -cos sin
cosh sinh -cos sin cosh sinh cos sin
sinh co

L L L L
L L L L

L L L L L L L L
L L L L L L L L
L

λ λ λ λ
λ λ λ λ

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ

−

− − −
− − −

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

sh sin -cos sinh cosh sin cos
cosh sinh  cos sin

sinh  cosh sin cos
sinh  cosh sin cos  

A A A A
A A A A

L L L L L L L
L L L L

k k k kL L L Lk k k k EI EI EI EIL L L L
EI EI EI EI

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ

λ λ λ λ
λ λ λ λ

− − −
− −

− − −
+ + − +

                                                                                                                     

                                                                                     (12) 
 
In order to have a non-trivial solution for ic 's, the 
determinant must be zero, that is: 
 

( )0, , ( ) 0L A tω∆ =                                                   (13)                                                     

 
Solving this characteristic equation will give the 
eigenvalue λ and the mode shapes 

1
( , ( ))x A tφ and 

2
( , ( ))x A tφ  corresponding to the amplitude ( )A t  in terms 

of time t . i.e., for a given A , the local stiffness at the 
crack location, the natural frequency and the mode shape 
corresponding to A are determined. By considering both 
distributed structural damping and local viscous damping 
due to the crack and obtaining the time intervals 
corresponding to the successive movements of the beam 
from a given position to a neighboring position, the 
damped free response of the beam can be obtained. 
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MECHANICAL ENERGY BALANCE APPROACH 
 
As mentioned before, for obtaining the beam vibration 
response, taking into account the mechanical energy loss 
due to the distributed structural damping and the local 
damping due to the crack, the mechanical energy of the 
cracked beam is calculated in every moment. The 
mechanical energy of the cracked beam, bE , at a given 

time t can be written as: 
 

b K P SE E E E= + +                                                    (14)                           
 
where KE , PE  and SE  denote the kinetic energy, the 
elastic strain energy and the energy stored at the crack 
location, respectively. When the specified point of the 
cracked beam during the vibration is moved from a 
position 1jA −  to its neighboring position jA , the kinetic 

energy of the cracked beam can be calculated as: 
 

0

0

2 2
  1 1 1 1 1 2 1 2

 0  

( , ) ( , ) ( , ) ( , )

2j

L Lj j j j j j j j
K L

A xA A xA A xA A xAm
E dx dx

t t

φ φ φ φ+ + + +
� �− −� � � �
� 	= +� 
 � 
∆ ∆� 	� � � �� �
� �   (15) 

 
In this equation t∆ is the time required for moving the 
specified point of the cracked beam from the position 

1jA −  to the position jA . Also, the elastic strain energy of 

the beam corresponding to the position jA can be written 

in the form: 
 

( ) ( ) ( )0

0

2 2 2
1 20
( , ) ( , )

2j

L L

P j j j j j PL

EI
E A x A dx A x A dx A U Aφ φ� �′′ ′′= + =

� 	� �� �        (16)        

 
The potential energy stored at the crack location depends 
on the magnitude of the slope discontinuity of the mode 
shapes at the two sides of the crack. The slope 
discontinuity at the crack location is given by: 
 

( ) ( )A A Aθ = Θ                                                          (17)                    
 

where ( ) 2, 0 1, 0( , ) ( , )x xA L A L Aφ φΘ = −� �� �.  
 
Equation (17) shows slope discontinuity at the crack 
location corresponding to the vibration amplitude of A . 
On the other hand, the nonlinear relation between the 
magnitude of the bending moment at the crack 
location, sM , and the slope discontinuity at the crack 

location,θ , is given by: 
 

 ( )s AM k Aθ=                                                           (18)   
 

The area under the curve sM θ−  is the stored  potential 
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energy at the crack location, that is, 
 

 

 0S sE M d
θ

θ= �                                                           (19)                                                     

 
On the other hand, the curve sM θ−  may be obtained 
by experimental tests. Therefore, one can plot the varia-
tions of the stored energy at the crack location against 
the variations of slope discontinuity ( )Aθ . In order to 
avoid repetitive and tedious integration, we can obtain the 
stored energy at the crack location, SE , for some values 

of θ , and then by interpolation, one can obtain SE  as a 

function of θ . Here, we use a fifth order polynomial 
interpolation as: 
 

5 4 3 2
1 2 3 4 5 6SE a a a a a aθ θ θ θ θ= + + + + +                  (20)                                                              

 
where ia , 1,2,...,6i =  are the coefficients of the 
polynomial. Finally, by using Equations (15), (16) and (20) 
one can obtain the total mechanical energy of the 
cracked beam corresponding to the given amplitude of 

( )A t . When the beam moves from one position to 
another neighboring position, the total mechanical energy 
of the beam decreases because of the distributed struc-
tural damping and the local damping at the crack location. 
The energy dissipation caused by the distributed struc-
tural damping in the time interval [0, ]t can be obtained 
as: 
 

0

0

0

0

2 23 3   
1 2

2 2 0  0  

2
    2  2

1 2 0  0  

( , ) ( , )

    ( ( , ) ( , ) )

s

t L L

c s sL

t L L

s L

W x t W x t
E c I dx c I dx dt

t x t x

dA
c I x Adx x Adx dt

dt
φ φ

� �� � � �∂ ∂
� 	= +� 
 � 
∂ ∂ ∂∂� 	� � � �� �

� �� � ′′ ′′= +� 	� 

� �� 	� �

� � �

� � �

    (21)                                  

 
The energy dissipation in a fatigue crack has a complex 
mechanism. Because of this complexity, the local 
damping due to the crack is neglected in bending 
vibration analysis of the cracked structures by many 
researchers (Chondros et al., 1998; Cornwell et al., 1999; 
Kisa and Brandon, 2000; Chondros et al., 2001; Orhan, 
2007; Mazanoglu et al., 2009). In this research, it is 
assumed that the energy-dissipation mechanism of the 
crack is viscous. Therefore, the energy dissipation at the 

crack location in time interval [0, ]t can be expressed as: 
 

[ ]
2

  22
2 1 0  0
( , ) ( , )

c

t t

c c c c

dA
E c d c dt c x A x A dt

dt
θ θ θ φ φ� � ′ ′= = = −� 


� �
� � �� �             

                                                                                  (22)                    

 
 
 
 
where, cc is the viscous damping coefficient.  
 
The coefficients of sc and cc are obtained by the 
experimental tests. Thus, when the beam moves 
between two neighboring positions, the amount of energy 
dissipation in the system can be written as: 
 

0

0

2 2
 2  2 2

1 20
( ( , ) ( , ) ) ( )

j

L L

d s j c j jL

dA dA
E c I x A dx x A dx t c A t

dt dt
φ φ

� �� � � �′′ ′′∆ = + ∆ + Θ ∆� 	� 
 � 

� � � �� 	� �

� �
       (23)         

 
Here, a step by step method is introduced to obtain the 
damped free vibration response of the cracked beam. 
Suppose that at 0t =  the displacement of a given point 
on the beam, e.g. the free end of the beam, is 1A  and the 
beam is released in the direction in which the crack is 
opening. At this case, the mechanical energy of the beam 
is 1E .  

Consider the beam passes the successive 
positions ( )1 1jA A j A= + − ∆ , 1, 2,3,...,j N= , in which 

A∆ is the incremental change in amplitude. By solving 
Equation(13) in every step, one can obtain the second 
derivatives of the mode shapes functions, 1φ′′  and 2φ′′ , 

and the slope discontinuity at the crack location, ( )jAθ , 

corresponding to each jA .  

Thus, the mechanical energy of the beam can be 
calculated in terms of the known amplitudes jA . Then, 

by taking into account the energy dissipation and 
applying the mechanical energy balance, the time 
required the beam to move from 1jA −  to jA is obtained. 

When the beam reaches extr NA A= , the kinetic energy 
of the beam vanishes and the beam moves in the 
opposite direction. In a similar way, one can obtain the 
time duration for every incremental movements of the 
beam, therefore, ( )1j e x trA A j A= − − ∆  can be 

calculated.  
This procedure is continued until the total mechanical 

energy of the beam, due to the energy dissipation in each 
step, approaches to zero. The energy balance relation 
between the two neighboring successive amplitudes of 
the beam is: 
 

1 1 1j j j j j j jP K S K P S dE E E E E E E
− − −

+ + = + + + ∆         (24)                   

 
The left hand side of Equation (24) corresponds to the 
mechanical energy of the beam at the previous step 

1j −  which is known. Therefore, using Equation(24), the 

time required the beam moves from 1jA −  to jA , i.e. jt∆ , 

can be calculated from the following equation: 
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0 0

0 0

 2 22 5 4 3 2
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j j j
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A A x A
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φ φ φ φ

φ

− − −

−

� �′′ ′′+ + + + + + +
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−
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0

0

0

0

1 1 1

  

1 1 2 2 1 0  

2 2
 2  2 2

1 20

( , ) ( , ) ( , ) }

( ( , ) ( , ) ) ( )

0
j j j

L L

j j jL

L L

s j c j jL

P K S

x A dx x A x A dx

dA dA
cI x Adx x Adx t c A t

dt dt
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φ φ φ

φ φ

− − −

− −
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 � 
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                                                                                      (25) 
 
Hence, the time required that the given point on the beam 
moves from 1A  to jA , is: 

 

1
2

j

j i
i

t t −
=

= ∆�                                      (26)                                                   

 
In this way, the damped free response of the cracked 
beam can be obtained by plotting jA against the time jt . 

 
The effect of the distributed structural damping on the 
free vibration of an intact beam 
 
The equation of motion for a beam with structural 
damped is given by (Humar, 1990): 
 

, , ,( , ) ( , ) ( , ) 0             0xxxx s xxxxt ttEIW x t c IW x t mW x t x L+ + = ≤ ≤         (27)   

                    
By applying the separation of variables method, the 
solution of Equation (27) may be considered as: 
 

2
0( , ) ( ) s in ( 1  )tW x t A x e tζ ωφ ω ζ ψ−= − +                (28)                                                          

 

where, 
2

sc
E
ωζ =  and, 0A and ψ are constants. For the 

first vibration mode, the natural frequency of the beam 
will be  
 

2
1.875 EI

L m
ω = � �

� 

� �

.  

 
Thus, the structural damping coefficient, sc , for the first 
mode can be expressed as: 
 

20 .5 6 8 9s

m E
c L

I
ζ=                                                (29)                                              

 
For determining the structural damping coefficient, free 
responses  of  an  intact  cantilever  beam  with  a   cross- 
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sectional area of 23.9 6.4 mm×  and two different 
lengths 40L cm= and 1 8L c m= obtained experimentally. 
A point-to-point laser vibrometer (OMETRON VH300+) is 
used to measure free response at the free end of the 
beam during the vibration and signal analyzer (B&K, type 
3109) is used to extract the experimental results. By 

fitting a decaying exponential function,
t

oA e ζω−
, to local 

maximum points of the experimental data, the damping 
ratios, ζ , are obtained 0.0008  and 0.0013 , respectively 
(Figure 3).  
 
 
THE EFFECT OF CRACK PARAMETERS ON THE 
DAMPED VIBRATIONAL BEHAVIOR OF THE 
CRACKED BEAM 
 
By employing the proposed method described in section 
4, a quantitative and qualitative evaluation of crack 
parameters effects on the vibrational behavior of the 
cracked beam is investigated. For the steel cantilever 
beam considered, the length is 18 cm , the rectangular 

cross-section is 
23.9 6.4mm× , and the crack 

parameters are 0.81cL

L
β = = , 0.36α = . The local 

stiffness at the crack location corresponding to the fully 

open case of the crack is .
1954.2o

N m
k

rad
=  and that of 

corresponding to the fully closed one is 2.85c ok k= . By 
applying the proposed method, the variation of the 
natural frequency against the vibration amplitude is 
calculated (Figure 4). The examination of the results 
demonstrate that for a given vibration amplitude, the 
range of the natural frequency variation depends on the 
crack parameters. An increase in the crack depth and/or 
approaching the crack location to the clamped end of the 
beam results in an increase in the range of natural 
frequency changes. In addition, as the initial amplitude of 
the beam becomes smaller, the range of the natural 
frequency changes will be smaller, too. For estimation of 
the local damping effect of the crack, a comparison is 
made between the free responses of the cracked and the 
intact beams. 

For this purpose, free responses of the beam having 
the crack depth ratio of 0 . 3 6 are obtained for two 
different lengths of 40L cm= and 18L cm= , with crack 

location ratios of 0.37β =  and 0.81β = , respectively. 
By inspecting the responses, it is concluded that only a 
small portion of the total damping is caused by the crack. 

For two mentioned cases and considering the 
distributed structural damping and the local damping at 
the crack location, free responses of the cracked beam 
are obtained using the proposed method. (Figures 5a and 
5b). Figures 6a and  6b  illustrate  free  responses  of  the  
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(a)                                                                                  (b)  
 
Figure 3. Experimental response of the intact cantilever beam with a length of (a) 40L cm= ; (b) 18L cm= . 

 
 
 

 
 
Figure 4. The range of the natural frequency changes of the cracked beam 
with the crack parameters of 0.36α =  and 0.81β =  against the vibration 
amplitude. 

 
 
 
mentioned cracked beams obtained by the experimental 
measurements. The comparison between Figures 5 and 
6 indicates that there is a good agreement between the 
theoretical and the experimental results.  

Also, the results show that approaching the crack to the 
clamped end of the beam causes to more decay of the 
cracked beam response. The spectra of the free 
responses illustrated in Figures 5 and 6 are shown in 
Figures 7a and 7b, respectively. Figures 7a and 7b reveal 
that the frequencies obtained from the proposed method 
are in agreement with those of experimental results. Also, 
these figures indicate that the harmonic components are 
appeared in the spectrum which reflects the nonlinearity 
due to the crack. In Figure 7b, in  both  curves,  there  are 

two picks at the frequencies of 154 Hz and 308 Hz . The 
first pick corresponds to the fundamental frequency of the 
cracked beam and the second one is the first harmonic 
component of the fundamental frequency, which shows 
the superharmonic phenomenon. The superharmonics 
are weak in Figure 7a. Comparing Figures 7a and 7b 
illustrates that for a beam with a given crack depth, 
approaching the crack location to the clamped end of the 
beam, results in an increase in the amplitude of the 
superharmonic.  

As mentioned in section 5, for investigating the 
vibrational behavior of the cracked structures, in order to 
avoid complexity, many researchers have neglected 
damping effects (Chondros et  al.,  1998;  Cornwell  et  al.,  
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                    (a)                                                                      (b)  
 
Figure 5.  The free responses obtained by the proposed method for the cracked beam with a crack depth ratio of 0.36α =  and with two 
different crack location ratios of (a) 0.37β = and (b) 0.81β = . 

 
 
 

 

                   (a)                                                                              (b)  
 
Figure 6. The free responses obtained by the experiment for the cracked beam with a crack depth ratio of 

0.36α =  and with two different crack location ratios of (a) 0.37β = and (b) 0.81β = . 
 
 
 

                  (a) (b) 

 
 
Figure 7.  The spectra of the free responses obtained by the proposed analytical method (- - -) and the experiment ( ___ ) for 
the cracked beam with a crack depth ratio of 0.36α =  and with two different crack location ratios of (a) 0.37β = and (b) 

0.81β = . 
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Figure 8. Variation of the fundamental frequency ratio of the cracked cantilever beam 
against the crack location ratio for the crack depth ratio of 0.36α =  obtained from the 
proposed method based on the fatigue crack model by taking into account the effects of 
the system damping (___), fatigue crack model without taking into account the effects of 
the system damping ( - - - ), undamped open crack model (. . .) and the experimental 
results (ο). 

 
 
1999; Kisa and Brandon, 2000; Chondros et al., 2001; 
Orhan, 2007; Mazanoglu et al., 2009). However, the 
experimental evidences show that the damping effects 
can not be ignored in free vibration analysis of the 
structures (Figure 6). Therefore, the main purpose of the 
present work is to propose a more realistic and 
reasonable model for the cracked beam by improving the 
assumptions, that is, considering a continuous model for 
the cracked beam and taking into account the nonlinear 
behavior of the crack as well as the effects of the 
structural damping and the local damping due to the 
crack. To this end, Kelvin-Voigt damping model (Humar, 
1990) is used for taking into consideration the distributed 
structural damping of the beam, and the local damping at 
the crack is assumed to be viscous. However, it should 
be mentioned that the construction of an exact damping 
model for a cracked structure due to the complexity of the 
damping mechanisms is very difficult task. This 
complexity comes from the fact that in cracked metallic 
materials, in addition to linear viscoelastic effects, there 
are other mechanisms of energy dissipation such as, 
plastic deformation, internal Coulomb damping, air 
damping and the other nonlinearities. Therefore, in 
figures 7a and 7b, the sources of difference between the 
spectra corresponding to the responses obtained through 
the proposed theoretical method and the experiment are 
due to the abovementioned effects and some other 
uncertainties.  

In Figure 8, the variation of the frequency ratio against 
the crack location ratio, is plotted for both fatigue crack 
(nonlinear model) and open crack (linear  model).  In  this 

Figure, the small circles show the results obtained by the 
experimental measurements. The solid curve is 
corresponding to the fatigue crack model by taking into 
account the effects of the distributed structural damping 
and the local damping of the crack. The dashed and 
dotted curves are corresponding to the fatigue crack 
model and the open crack model, respectively. For 
plotting these two curves, the damping effects are 
neglected. 

By examining this figure, it is concluded that the results 
obtained from the proposed method based on the 
nonlinear model (the solid curve) agree well with the 
experimental results (the hollow circles). Moreover, the 
results illustrate that the frequency ratio is affected by the 
system damping. Therefore, in practical cases, the 
damping effects on the vibrational behavior of the beam 
can not be neglected. In addition, Figure 8 shows that for 
a given crack depth ratio, the frequency reduction in the 
open crack model (linear model with no energy 
dissipation) is more than that of the breathing one. This 
result has been previously proved for the cracked beams 
(Cheng et al., 1999; Chondros et al., 2001). 
 
 
Conclusion 
 
In this research, a new approach for free vibration 
analysis of the cracked cantilever beam with a breathing 
crack by taking into account the effects of the distributed 
structural damping and the local damping of the crack is 
presented. The experimental  test  results  show  that  the  



 
 
 
 
beam local stiffness at the crack location varies conti-
nuously as a nonlinear function between the two extreme 
values of ok  and ck due to opening and closing the crack. 
Therefore, local stiffness at the crack location changes 
continuously during the beam vibration. Furthermore, the 
experimental results show that the stiffness of the 
cracked beam with a fully closed crack is different from 
that of intact one. However, some researchers have been 
assumed that the stiffness of the cracked beam for the 
case of fully closed crack is equal to that of the intact 
beam (Abraham and Brandon, 1995; Cheng et al., 1999; 
Loutridis et al., 2005; Douka and Hadjileontiadis, 2005). 

A main advantage of the proposed model is that it 
makes it possible to obtain continuous variations of the 
natural frequency and mode shape of the cracked beam 
during the vibration. Also, using the model and employing 
the proposed method, one can obtain the damped free 
vibration response of the beam with a breathing crack. 
Whereas the frequency monitoring is used for assess-
ment of the structural integrity and safety, ignoring the 
system damping effects may lead to significant errors. 
Many researches ignore damping effects on vibration 
analysis of the cracked structures. Moreover, to avoid the 
nonlinearity, many researchers assumed that the crack 
remains always open or they considered the bilinear 
frequency in order to take into account the effect of the 
crack closure during the system vibration. This research 
shows that ignoring the nonlinearity due to the crack and 
the damping effects, lead to inaccurate results. 

One of the features of a nonlinear system is the 
appearance of the superharmonics of its fundamental 
frequency in the vibration response. Therefore, presence 
of the superharmonics of the fundamental frequency in 
the response spectra of the cracked beam reveals the 
nonlinear dynamic behavior of the cracked beam, which 
can be used as a crack indicator in structural health 
monitoring applications. It is worth noting that, in real 
structures it is usually difficult to obtain a clear 
interpretation of a FFT, and superharmonics are difficult 
to identify. However, the nonlinearity due to the variation 
of the beam stiffness during the vibration always gives 
rise to superharmonics of the fundamental frequency, 
and the level of their amplitudes and clarity in FFT 
depends on the intensity of the nonlinearity. In addition, 
free responses and their corresponding spectra obtained 
by the experiment are in agreement with those of 
obtained by proposed method. Also, the results show that 
for a beam with a given crack depth, approaching the 
crack location to the clamped end of the beam increases 
in the damping of the beam free response. 
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