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INTRODUCTION 
 
Mathematical modeling of dynamic process lead us to a 
system of differential equation.  In formulating the mathe-
matical models, one can ignore the random uncertainties 
in the system and derive a deterministic model.  Such a 
deterministic model of a dynamic process can be des-
cribed by a system of deterministic differential equations. 

The dynamic of the process will be described by a 
system of stochastic differential equations with random 
parameters. Therefore, one is interested in approximating 
a model by means of a deterministic model. Such an 
approximate in will lead us to study the estimations of the 
error response between the solutions and the solutions of 
the mean of a nonlinear boundary value problems with 
random parameters. 

Very recently problems of this nature with regard to 
roots of random polynomials (Ladde and Sambandham, 
1982), random initial value problem (1.4) have been 
investigated. 

In this work, many areas of applications there have 
recently increasing interest mathematical models that 
include random effects, for example initial or bounded 
value problems for random differential equations. While 
there are powerful fairly general methods available for the 
treatment of certain types of random differential equa-
tions, these methods sometimes are difficult to apply to 
special problems. 

An alternative approach involves a direct numerical 
construction of the used information about the solution of 
a random differential equation. 
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There are have been a many papers dealing with direct 
numerical method, for examples (Ladde et al., 2003; 
Bernfeld and Lakshmikantham, 1974; Deimling et al., 
1985) with initial and boundary value problems for the nth 
order linear equations. 

In this paper, we will be and primarily concerned with 
boundary value problems for nonlinear second order 
equations. 

Any direct numerical method involves the discretization 
of the random input problem, for example, by assuming 
that this input is described by number of random varia-
bles with known properties. 

In other cases, a mathematical approximation is 
involved such as replacement of a stochastic process by 
a random polynomial or the truncation an appropriate 
series expansion. 

In any case, we will be primarily concerned with the 
nonlinear two-point value problem. 
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1 2 1 2 6, ,........, , , ,........,nw w w µ µ µ are bounded 

continuous random variables. 
 
Our main object is to provide a feasible algorithm for the 
computation of the marginal distribution function 
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( ) ( ){ }tf z P y t z= ≤                                  (1.2) 

 
A numerical integration of a set of related deterministic 
problems we construct approximate distribution function 

( )*
tf z . The case in which the problem involves two 

random variables in discussed in detail two methods are 
given the first with 2µ  and 5µ  as the only random 

variables and the second with 1µ  and 2µ  random. 

In each case convergence of ( )*
tf z  and ( )1f z  is 

established in the sense that for any 0ε >  one can 
insure that  
 

( ) ( )*
t tf z f z ε− <                                               (1.3) 

 

Eq. (1.1) are those necessary to insure that the solution 
( )y t is a continuously differentiable function of those 

parameters. 
 

Theorem 1-1: 
 

Consider the boundary value problem  
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and R is a bounded random variable taking on values in 
closed interval 

1 2,RI R R� �� �= with probability distribution 

function ( ) ( ), forR Rf a P R r r I≤ ∈ . 

Assume that the problem (1.4) has a unique solution for 
each value in RI .  For a fixed 

1,ot t t� �� �∈  we want to 

determine a numerical approximation ( )*
tf z  to the 

probability distribution function, ( ) ( )( )tf z P y t z= ≤ . We 

want to determine ( )tf z′′  so that given 0ε >  we can 

insure that ( ) ( )*
t tf z f z ε− < . 

Let the set { },.......,o mr r  be a partition of RI  with 

1, 0,......,i ir r i m+< = and ( )1sup ,......, mi ir r rδ +=  

using a method of order of accuracy at least iP  

numerically that 1m +  boundary value problems: 
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On a set { }jt  where , 1,......,ojt t j h i J= + =  with 

( )1 oh t t J= − .  If the value calculated for ( )1iy t , there 

exist constant iC such that  

( )1 0,1,......,

0,1,......,
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Using linear interpolation we can approximate ( )iy t  

between mesh points by  
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It follows     ( ) ( )* 21
2

P
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Hence A is the only random variable in (1.4), the 

probability attached to a solution ( )iy t is the same as 

the probability corresponding to ir .  If for 

( )1, , ,ot t y t r� �� �  is r  monotonically increasing function 

of r , then if for yi we have 
 

( ) ( )( ) ( ) ( )Ri i i i if z P y t z f r P R r= ≤ = = ≤  

We will assume that 0y
r
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 and 
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 are continuous 

for 1,ot t t� �� �∈  and Rr I∈ .  There are constants 1M  
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Then, we define ( )*
tf z  to be  
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Since *
iz  is a numerical approximation to ( )iy t rather 

than the exact value. It actually corresponds not to a, but 



 
 
 
 
to some nearly value of  r2 Using this value obtain the 

approximate distribution function ( )*
tf z  given by : 
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Then by the triangle inequality the error can be 
expressed as 

( ) ( ) ( ) ( ) ( ) ( )* *
t tt t t tf z f z f z f z f z f z− ≤ − + −    (1.13) 

 
We will now construct an upper bound for each of the 
terms on the right side in (1.13). The first term is the error 
due to numerical integration and the second term is the 
error due to replacing R by a discrete random variable. 
For the first term, we have Newton’s Interpolation formula 
that  
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And it follows that  
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Hence, if sup ( )tf z′′  is finite, and if rδ  and h are 

sufficiently small, then 
 

( ) ( ) 1
2t tf z f z ε− <                                (1.19) 

( ) ( ) 1
2t tf z f z ε− <                                (1.20) 

 

For the second term on the right side of (1.13), we have 
that : 
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it follows that if ( )sup t
z

f z′  is finite and if h is sufficiently 

small, then 
 

( ) ( )* 1
2t tf z f z ε− <                                    (1.21) 

 
obtaining (1.21) and (1.18) with (1.12) gives derived the 
result. 

It remains to show that ( ) ( )t tf z andf z′′′ are bounded. Since 

( , ) / 0y t r r∂ ∂ f . This exists by the inverse function 
theorem, a well- defined differentiable inverse function 
1/y. 

Further, if ( )y rη = , then ( )1r y η−=  and 
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This complete the proof of the following theorem. 
 
Theorem 1: Let y(t) be the solutions of 
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Where , Bα  are constants and R is a bounded random 

variable taken on values in closed interval [ ]1 2,RI R R=  

with distribution function 2( ) ( )R Af a C R∈  . Assume that 
for each value of R, the deterministic problem 
corresponding to (1,4) has unique solution. Assume that 

2 2/ & /y r y r∂ ∂ ∂ ∂  are continuous for [ ]0 1,t t t∈  and 

nr I∈  and that / 0y r∂ ∂ f  there. Let 
*( ), ( ), ,t tF z F z r and h∆  as defined as above. Then for 

any 0∈f , it is choose r∆  and h so small that 
*

( ) ( )t tf z f z− ∈p  
 

§ 2. For the case of two random boundary value problem: 
We will now extend in a more formal to the case of are 
two random boundary conditions. 
We consider the following boundary value problem: 
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Where ,R R  are independent random variables taking 

on values in the real internal 
1 2,RI R R� �� �=  and  

1 2,RI R R� �
� �

=  respectively. 

Suppose that ,R R  are obtained by the respective 

distribution function ( )Rg r  and ( )Rg r  for Rr I∈ , 

Rr I∈ . We assume that the density function 

( ) ( )&R Rf r f r exist and (2.1) has a unique solution for 

each of the possible values of andR R . 

Using the conditional probability distribution of ( )y t z=  

givenR r= , we have: 
 

( ) ( ) ( )|
R

t t R
I

g z g z R r f r d r= =�
       (2.2) 

Which insures that ( ) ( )t tg z g z η− <  

 
Proof : 
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by the sets 

( ){ }1 1, ,ij i i j jS r r r r r r r r+ += ≤ < ≤ <  

i=0, 1, …., M-1 & j=0, 1, …., J-1 for some integers M and 
J-1 . 

1 2 1, ,o oMR r R r R r= = =  and 2 1R r= . Let  
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Where ( ) ( ), , , , , ,ij i if t y y f t y y r r=′ ′  for each i 

and j.  Use their solutions and ( ),RRg r r  to construct 

upper and lower bounds, ( )tg z  for ( )tg z . We will show 

that for any 0η > , we can find rδ  and rδ sufficiently 

small such that ( ) ( )tg z g z η− < . 

Suppose that ( ), ,y t r r  is strictly increasing as a 

function of r, and the partition points of RI have been 

chosen so that for any given interval 1,i ir r +� �� � we know 

that either 0y
F

∂ ≥
∂

 or 0y
r

∂ ≤
∂

 for all ( ), ijr r S∈ . 

And suppose that ( )1,i jy t z+ ≤ , ( )1, 1i jy t z+ + ≤  

Then ( ), ,y t r r z≤  for all ( ), ijr r S∈  

Thus we can define upper and lower bounds for ( )tg z  

as follows: 
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Then for any ( )0,1,.....,j J∈  there exists 

( )0,1,.....,m M∈  such that ( )ijP S  in ( )tg z  for all 

i j≥ . 

For ( )1,j jr r r +∈  define ( ) ijr r r= .  Thus ( )r r  is 

defined for all in 
1 2,R R� �

� �
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, then we have that 

( ) ( ) ( )2 1t tg z g z R R CK rδ− ≤ −  with K is an integer.  

It is possible to show that for a given rδ , the partition 

can be defined so that rδ  to zero. 
We note for 2k′ =  it follows that  

( ) ( ) ( )2 12t tg z g z R R C rδ− ≤ −  Which completes 

the proof of the following theorem  
 
Theorem 2: Let y(t) be the solution of (2.1) and 

2/ & ( , ) /y r f r r r r C∂ ∂ ∂ ∂ ∂ ≤  for  &R R
r I r I∈ ∈  , 

Then there exist a partition which insures 
 

( ) ( )t tg z g z η− p  
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