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In this article, we apply the modified (G'/G)-expansion method to construct hyperbolic, trigonometric 
and rational function solutions of nonlinear evolution equations. This method can be thought of as the 
generalization of the (G'/G)-expansion method given recently by Wang et al. (2008). To illustrate the 
validity and advantages of this method, the (1+1)-dimensional Hirota-Ramani equation and the (2+1)-
dimensional breaking soliton equation are considered and more general traveling wave solutions are 
obtained. It is shown that the proposed method provides a more general powerful mathematical tool for 
solving nonlinear evolution equations in mathematical physics. 
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INTRODUCTION 
  
Nonlinear evolution equations are often presented to 
describe the motion of isolated waves, localized in a 
small part of space, in many fields such as 
hydrodynamics, plasma physics, and nonlinear optics. 
Seeking exact solutions of these equations plays an 
important role in the study of these nonlinear physical 
phenomena. In the past several decades, many effective 
methods for obtaining exact solutions of these equations 
have been presented, such as the inverse scattering 
method (Ablowitz and Clarkson, 1991), Hirota bilinear 
method (Hirota, 1980), Backlund transformation (Hirota, 
1980; Miura, 1978), Painleve expansion (Hearns et al., 
2012; Kudryashov, 1988; Kudryashov, 1990; 
Kudryashov, 1991; Russo et al., 2012; Weiss et al., 
1983), Sine-Cosine method (Wazwaz, 2004; Zayed and 
Abdelaziz, 2011), Jacobi elliptic function method (Lu, 
2005; Liu et al., 2001), Tanh-function method (Fan, 2000; 
Yusufoglu and Bekir, 2008; Zayed and Abdel Rahman, 
2010; Zhang and Xia, 2008), F-expansion method (Zhang 
and Xia, 2006),  Exp-function method (Bekir, 2010; Bekir, 
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2009; He and Wu, 2006), (G'/G)-expansion method 
(Bekir, 2008; Islan, 2010; Kudryashov, 2010; 
Kudryashov, 2009; Ma et al., 2011; Peng, 2008, 2009; 
Reza and Rasoul, 2011; Wang et al., 2008; Zayed, 2009; 
Zayed et al., 2011; Zayed and Al-Joudi, 2010; Zayed and 
Al-Joudi, 2009; Zhang et al., 2011), the modified (G'/G)-
expansion method (Ma et al., 2011; Reza and Rasoul, 
2011; Wang et al., 2008) and so on. Wang et al. (2008) 
introduced the (G'/G)-expansion method to look for 
traveling wave solutions of nonlinear evolution equations. 
This method is based on the assumption that these 
solutions can be expressed by a polynomial in (G'/G), 

and that ( )G G  satisfies a second order linear 

ordinary differential equation (ODE). 
 

( ) ( ) ( ) 0,G G G       
                           (1) 

 

Where , 
 

are constants and ' / ,d d
 

while 

kx t   , and k ,   are constants. The degree of 

this polynomial can be determined by considering the 
homogeneous balance between the highest-order 
derivatives and nonlinear terms appearing in the given 
nonlinear evolution equations. The coefficients of this 
polynomial  can  be obtained by solving a set of algebraic  



 
 
 
 
equations resulted from the process of using the method. 
The present paper is motivated by the desire to propose 
a modified (G'/G)-expansion method for constructing 
more general exact solutions of nonlinear evolution 
equation. To illustrate the validity and advantages of the 
proposed method, we would like to employ it to solve the 
(1+1)-dimensional Hirota-Ramani equation (Hirota and 
Ramani, 1980; Reza and Rasoul, 2011) and the (2+1)-
dimensional breaking soliton equation (Zayed et al., 
2011; Zayed and Al-Joudi, 2009. 

 
 
DESCRIPTION OF THE MODIFIED (G'/G)-EXPANSION 
METHOD 

 
A given nonlinear evolution equation is in the form 
 

( , , , , , ,...),x y t xx xtP u u u u u u                                  (2) 

 

Where ( , , )u x y t , we use the wave transformation 

 

( , , ) ( ),u x y t u    1 2 ,k x k y t                        (3) 

 
Where k1, k2, ω are constants, then Equation 1 is 
reduced into the ODE 

 ( ) ( 1), ,... 0,r rQ u u                                                     (4) 

 

Where 
( ) , 0

r
r

r

d u
u r

d
  and r is the least order of 

derivatives in the equation. Setting 
( ) ( ),ru V   Where 

( )V 
 
is a new function of  , we further introduce the 

following anstaz: 

 

( )

0

( ) ( ) ,

im
r

i

i

G
u V

G
  



 
   

 
 0,m 

                    (5)
 

 

Where ( )G G  satisfies Equation 1,
 

while 

( 0,1,..., )i i m  are constants to be determined later. 

To determine ( )u   explicitly, we take the following four 

steps (Zayed and Al-Joudi, 2010; Zayed and Al-Joudi, 
2009; Zhang et al., 2011): 
 
Step 1: Determine the positive integer m in Equation 5 by 
balancing the highest-order nonlinear terms and the 
highest-order derivatives in Equation 4. 
Step 2: Substitute Equation 5 along with Equation 1 into 
Equation 4 and collect all terms with the same powers of 

,

i
G

G

 
 
 

 (0,1,..., )i m together; thus, the left-hand side  
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of Equation 4 is converted into a polynomial in .

i
G

G

 
 
 

 

Then set each coefficient of this polynomial to zero, to 
derive a set of algebraic for 

1 2, , , , (0,1,..., ).i k k i m    

Step 3: Solve these algebraic equations by the use of 

Mathematica to find the values of 1 2, , , ,i k k 
 

(0,1,..., ).i m
 

Step 4: Use the results obtained in above steps to derive 

a series of fundamental solutions ( )V  of Equation 4 

depending on 
G

G

 
 
 

, since the solutions of Equation 1
 

have been well known for us as follows: 
 

(i) If 
2 4 0   , then 

 

2 2

1 2
2

2 2

1 2

sinh 4 cosh 4
1 2 2

4 .
2 2

cosh 4 sinh 4
2 2

c c
G

G
c c

 
   


 

 
   

    
               

                      (6) 

          

 

(ii) If 
2 4 0   , then 

 

2 2

1 2
2

2 2

1 2

sin 4 cos 4
1 2 2

4 .
2 2

cos 4 sin 4
2 2

c c
G

G
c c

 
   


 

 
   

    
                

                      (7)

 

 

(iii) If 
2 4 0   , then 

 

2

1 2

.
2

cG

G c c





 
  

                                                    (8) 
 
Where c1 and c2 

are constants, we can obtain exact 
solutions of Equation 2 by integrating each of the 

obtained fundamental solutions ( )V  with respect to 

 and r times as follows: 

 
2

1 1 1

1

( ) ... ( ) ... ,
r r

r j

r r j

j

u V d d d d

 

      





   
                (9)  

 

Where ( 1,2,..., )jd j r are constants 

 
 
Remark 1 
 

It can easily be found that when 0r  , ( ) ( )u V 
 

then Equation 5  becomes  the  anstaz solutions obtained 
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in Wang et al. (2008). When 1r  , the solution of 
Equation 9 can be found in Zhang et al. (2011) and 
cannot be obtained by the methods in Wang et al. (2008). 

 
 
APPLICATIONS 

 
Here, we used the modified (G'/G)-expansion method to 
find the exact solutions of the following nonlinear partial 
differential equations (PDEs): 

 
 
Example 1: Nonlinear Hirota-Ramani equation 
 
Here, we used the proposed method previously used in 
the work, to find the solutions to Hirota-Ramani equation 
(Hirota and Ramani, 1980; Reza and Rasoul, 2011): 

 
(1 ) 0,t xxt x tu u u u   

                                 (10) 

 
Where 0  is a constant. To this end, we use the wave 

transformation 

 

( , ) ( ),u x t u 
    

,kx t                                (11) 

 
Where k, ω are constants, to reduce Equation 10 to the 
following ODE: 

 
2 2( ) 0.k u k u k u                                  (12) 

 
Setting 1r  and u V  , we have 

1( ) ( )u V d d    , where ( )V  satisfies the 

equation 

 
2 2( ) 0.k V k V k V       

                        (13) 

 
According to Step 1, we get m + 2 = 2m, and hence m = 

2. We then suppose that Equation 13 has the formal 

solution 

 
2

2 1 0( ) ,
G G

V
G G

   
    

     
                                (14)

 

 
It is easy to see that 

 
4 3 2

2

2 2 1 2 2 1

2 2

2 1 1 2 1

( ) 6 (10 2 ) (8 4 3 )

(6 2 ) 2 .

G G G
V

G G G

G

G

       

      

       
           

     

 
     

 

(15) 

 
 
 
 

4 3 2

2 2 2 2

2 1 2 1 0 2 0 1 0( ) 2 ( 2 ) 2 .
G G G G

V
G G G G

         
          

            
                 

(16) 

 
Substituting Equation 14 to 16 into Equation 13 and 

collecting all terms with the same powers of 
G

G

 
 
   

together, the left-hand side of Equation 13 is converted 

into a polynomial in 
G

G

 
 
 

. Setting each coefficient of this 

polynomial to zero, we get the following algebraic 
equations: 
 

2 2 2

0 2 1 00: ( ) (2 2 ) 0,k k k            
(17) 

 
2 2

1 2 1 1 0 11: ( ) (6 2 ) 2 0,k k k                 
(18)

 

 
2 2 2

2 2 2 1 1 0 22: ( ) (8 4 3 ) ( 2 ) 0,k k k                   (19) 
 

2

2 1 1 23: (10 2 ) 2 0,k k        
              (20) 

 
2 2

2 24: 6 0.k k      
                                (21) 

 
On solving the algebraic Equations 17 to 21, we have the 
results: 
 

2

6
,

k





   1

6
,

k 





   0

6
,

k 





   

2 2
,

1 ( 4 )

k

k




 




 
 
         (22) 

                  

 

Where 
2 2( 4 ) 1.k     Consequently, we deduce the 

following exact solutions of Equation 10: 

 

(i) If 
2 4 0  

 
(Hyperbolic solutions) 

 

When 
2 4 0,   we set 2 4 .

2


     Then we get 

 
2

2 2

1 2
1.

1 2

sinh cosh3 ( 4 ) 3 ( 4 )
( ) .

2 cosh sinh 2

c ck k
u d d

c c

    
  

   

   
   

 


       (23) 

 
Substituting Equations 8, 10, 12 and 14 obtained in Peng 
(2008, 2009) into Equation 23, we have respectively the 
following kink-type traveling wave solutions: 
 

(1) If 1 2 ,c c then 

 
2 2

2

1 2 1 1

3 ( 4 ) 3 ( 4 )
( ) tanh [ sgn( ) ]

2 2

k k
u c c d d

   
    

 

  
     

=
2

1 2 1 1

3 4
tanh[ sgn( ) ] .

k
c c d

 
 




 

             (24)

      



 
 
 
 

(2) If 1 2 0,c c  then 

 
2 2

2

1 2 2 1

3 ( 4 ) 3 ( 4 )
( ) coth [ sgn( ) ]

2 2

k k
u c c d d

   
    

 

  
     

=
2

1 2 2 1

3 4
coth[ sgn( ) ] .

k
c c d

 
 




 

         (25)

   

(3) If 1 2 0,c c  then 

 
2 2

2

1

3 ( 4 ) 3 ( 4 )
( ) coth

2 2

k k
u d d

   
   

 

  
    

=
2

1

3 4
coth .

k
d

 







         (26)

  

(4) If 1 2 ,c c then 

 

1( ) ,u d 
             (27) 

 

Where 1

1 2 1tanh ( / ),c c   
1

2 1 2tanh ( / )c c  and 

1 2sgn( )c c  is the sign function, while   is given by: 

 

 
2 2

.
1 ( 4 )

t
k x

k




 

 
  

  

 

 

(ii) If 
2 4 0  

 
(Trigonometric solutions) 

 
In this case, we have 
 

2

2 2

2 1 2

2 2

1 2

2

1

sin 4 cos 4
3 ( 4 ) 2 2

( )
2

cos 4 sin 4
2 2

3 (4 )
.

2

c c
k

u d

c c

k
d

 
   

 
 

 
   

 




    
             

              


 



      (28)

 

 
We now simplify Equation 28 to get the following periodic 
solutions: 

 

(1)  
2

2

1 1

6 4 1
( ) tan 4 ,

2 2

k
u d

 
    



  
    

                  (29)

 

Where 1 2
1

1

tan
c

c
   
  

 

 and 
2 2

1 2 0.c c 
 

 

 (2)  
2

2

2 1

6 4 1
( ) cot 4 ,

2 2

k
u d

 
    



  
    

                (30)

 

 

Where 1 2
2

1

cot
c

c
   

  
 

 and 
2 2

1 2 0.c c    
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(iii) If 
2 4 0    (Rational function solutions) 

 
In this case, we have 
 

2

2 2
1 1

1 2 1 2

66
( ) .

[ ( )]

c kck
u d d d

c c c c k x t
 

   

 
    

   


       (31)                      

 

 
 
Remark 2  

 
If we multiply Equation 13 by ( )V   and integrate with 

zero constant of integration, we deduce that  

 
2 2 3

1 1( ) ( ) ( ),V aV bV                             (32) 

 

Where   1 2
,

k
a

k

 




    1

2
.

3
b

k


  

 
On solving Equation 32 we have the two cases: 
 

(i) If 0,
k 




  

 

23( )
( ) sec ,

2 2

k k
V h

k k

    


  

  
   

 
            (33) 

 

23( )
( ) csc .

2 2

k k
V h

k k

    


  

   
   

 
          (34) 

 
Integrating Equations 33 and 34, we have the solutions of 
Equation 10 in the forms: 
 

1

3
( ) tanh ,

2

k k
u d

k

    


  

  
   

 
      (35) 

 

1

3
( ) coth .

2

k k
u d

k

    


  

  
   

 
       (36) 

 

Substituting  
2 2

,
1 ( 4 )

k

k




 




   

into Equations 35 

and 36, we arrive at the same solutions of Equations 24 
and 25 or 26, respectively. 

 

(ii)

 

0,
k 





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23( )
( ) sec ,

2 2

k k
V

k k

    


  

   
      

          (37) 

 

 

 

23( )
( ) csc .

2 2

k k
V h

k k

    


  

   
        

 

 

 

 2      (38) 

 
Integrating Equations 37 and 38, we have the solutions of 
Equation 10 in the forms: 
 

1

3
( ) tan ,

2

k k
u d

k

    


  

      
            

       (39) 

 

1

3
( ) cot ,

2

k k
u d

k

    


  

     
            

       (40) 

 

Substituting 
2 2

,
1 ( 4 )

k

k




 




   

into Equations 39 

and 40, we arrive at the same solutions of Equation 29 
and 30, respectively. 
 
 
Example 2: Nonlinear breaking soliton equation 
 
Here, we used the proposed method previously used in 
the work, to find the solutions of the breaking soliton 
equation (Zayed et al., 2011; Zayed and Al-Joudi, 2010; 
Zayed and Al-Joudi, 2009):  

 
4 2 0.xt x xy xx y xxxyu u u u u u   

                    (41) 

 
To this end, we use the wave transformation 
 

( , , ) ( ),u x y t u    1 2 ,k x k y t   
                                          

 
         (42) 

 

Where 1 2,k k and   are constants, to reduce Equation 

41 to the following ODE: 
 

2

1 2 1 26 0.u k k u u k k u      
                 (43) 

 
Integrating Equation 43 once with respect to , with zero 

constant of integration, we get 

 
2 2

1 2 1 23 0.u k k u k k u     
                       (44) 

 

Setting 1r  , and u V  , we deduce that 

( )V  satisfies the equation: 

 
 
 
 

2 2

1 2 1 23 0.V k k V k k V   
                    (45) 

 
According to Step 1, we get m = 2. Thus, the formal 
solution of Equation 45 has the same form of Equation 
14. 
Substituting Equations 14 to 16 into Equation 45 and 

collecting the coefficients of 

j
G

G

 
 
 

0,1,2,3,4.j   

Setting each coefficient to zero, we get the following 
algebraic equations: 

 
2 2 2

0 1 2 0 1 2 2 10: 3 (2 ) 0,k k k k       
          (46) 

 
2 2

1 1 2 0 1 1 2 2 1 11: 6 (6 2 ) 0,k k k k          
          (47) 

 
2 2 2

2 1 2 1 0 2 1 2 2 2 12: 3 ( 2 ) (8 4 3 ) 0,k k k k            
      (48) 

 
2

1 2 1 2 1 2 2 13: 6 (10 2 ) 0,k k k k     
               (49) 

 
2 2

1 2 2 2 1 24: 3 6 0.k k k k   
           (50) 

 
On solving the algebraic Equations 46 to 50, we have the 
following results: 
 

2 12 ,k   1 12 ,k   0 12 ,k   2 2

1 2( 4 ).k k    
                                

 
(51)

 
 
Consequently, we deduce the following exact solutions of 
Equation 41: 
 

(i) If 
2 4 0  

 
(Hyperbolic solutions) 

 

Setting  2 4 .
2


     Then we get 

 
2

2 21 1 2 1
1.

1 2

sinh cosh
( ) ( 4 ) ( 4 ) .

2 cosh sinh 2

k c c k
u d d

c c

 
      

 

 
     

 


 (52) 
 

Substituting the results of Equations 8, 10, 12 and 14 of 
Peng (2008, 2009) into Equation 52, we have 
respectively, the following Kink-type traveling wave 
solutions: 
 

(1) If 1 2 ,c c then  

  

 

 

2

1 1 2 1 1( ) 4 tanh[ sgn( ) ]u k c c d        
     (53) 

(2) If 1 2 0,c c  then 

2

1 2 2 1( ) 4 coth[ sgn( ) ] .u k c c d        
     

(54)

 



 
 
 

      

(3) If 
1 2 0,c c  then 

 

2

1( ) 4 coth .u k d      
                              (55) 

 

(4) If 1 2 ,c c then 

 

1( ) ,u d 
              (56) 

 

Where 
2 2

1 2 1 2( 4 ) .k x k y k k t        

 

(ii) If 
2 4 0  

 
(Trigonometric solutions) 

 
In this case, we have 
 

2

2 2

1 2
2 21 1

1
2 2

1 2

sin 4 cos 4
2 2

( ) (4 ) (4 ) .
2 2

cos 4 sin 4
2 2

c c
k k

u d d

c c

 
   

      
 

   

    
       

        
              



     (57) 
 

We now simplify Equation 57 to get the following periodic 
solutions: 
 

(1) 2 2

1 1 1

1
( ) 4 tan 4 ,

2
u k d      

 
      

          (58)

 

 

Where
1 2

1

1

tan
c

c
   
  

 
 and 

2 2

1 2 0.c c   

 (2) 2 2

1 2 1

1
( ) 4 cot 4 ,

2
u k d      

 
      

           (59) 
 

Where 
1 2

2

1

cot
c

c
   

  
 

 and 
2 2

1 2 0.c c   

 

(iii) If 
2 4 0    (Rational function solutions) 

 
In this case, we have 
 

2

2 1 2
1 1 1

1 2 1 2 1 2

2
( ) 2 .

( )

c k c
u k d d d

c c c c k x k y
 



 
    

   


        (60) 

 
 
Remark 3  

 
If we multiply Equation 45 by ( )V   and integrate with 

zero constant of integration, we deduce that  

 
2 2 3

2 2( ) ( ) ( ),V aV bV                        (61) 
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Where   
2 2

1 2

,a
k k


    

2

1

2
.b

k
  

 
On solving Equation 61 we have the two cases: 
 

(i) If 

2

0,
k


  

 

2

1 2 1 2

( ) sec ,
2 2

V h
k k k k

  


 
   

 
                          (62) 

 

2

1 2 1 2

( ) csc .
2 2

V h
k k k k

  


  
   

 
                          (63) 

 
Integrating Equations 62 and 63, we have the solutions of 
Equation 41 in the forms: 
 

1

2 1 2

( ) tanh ,
2

u d
k k k

  


  
    

 

                         (64) 

 

1

2 1 2

( ) coth .
2

u d
k k k

  


  
    

 

                (65) 

 

Substituting
2 2

1 2( 4 ).k k     into Equations 64 and 

65, we arrive at the same solutions of Equations 53 and 
54 or 55, respectively 
 

(ii)

 2

0,
k


  

 

2

1 2 1 2

( ) sec ,
2 2

V
k k k k

  


 
   

 

                 (66) 

 

2

1 2 1 2

( ) csc .
2 2

V
k k k k

  


 
   

 

                          (67) 

 
Integrating Equations 66 and 67, we have the solutions of 
Equation 41 in the forms: 

 

1

2 1 2

( ) tan ,
2

u d
k k k

  


 
    

 

            (68) 

 

1

2 1 2

( ) cot ,
2

u d
k k k

  


 
   

 
              (69) 
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Substituting 2 2

1 2( 4 ).k k    
 
into Equations 68 and 

69, we arrive at the same solutions of Equations 58 and 
59, respectively. 
 
 
Conclusions 
 
This study shows that the modified (G'/G)-expansion 
method is quite efficient and practically well suited for 
finding exact solutions to the Hirota-Ramani equation and 
the breaking soliton equation. Our solutions are in more 
general forms, and many known solutions to these 
equations are special cases of them. In Remarks 2 and 3, 
we have solved Equations 10 and 41 using a direct 
method, and we have arrived at the same solutions 
obtained by the modified (G'/G)-expansion method. With 
the aid of Mathematica, we have assured the correctness 
of the obtained solutions by putting them back into the 
original equations. 
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