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In this paper, some new classes of analytic functions, involving a certain integral operator, are 
introduced. Inclusion relationships, a radius problem and some other interesting properties are 
investigated. However, some applications of these results are also discussed. 
 
Key words: Univalent, starlike, convex, integral operator, convolution. 

 
 
INTRODUCTION 
 
Let Α  be the class of functions f :  given by  
 

n
n

n 2

f (z) z a z ,
∞

=

= + �                                                    (1) 

 
which are analytic in the open unit disc of 

{ }E z: | z | 1 .= <  Let kP ( )α  be the class of functions of 

p(z)  analytic in E  satisfying the properties of p(0) 1=  
and  
 

2 i

0

Rep(z)
| | d k , z re , k 2, 0 1.

1

π θ−α θ ≤ π = ≥ ≤ α <
−α�      (2)  

  
For 0,α =  the class of kP  introduced in Pinchuk (1971) 

was obtained, and can also be written for kp P ( )∈ α  as:  
 

1 2 i 2

k 1 k 1
p(z) ( )p(z) ( )p (z), p P ( ) p( ), i 1,2

4 2 4 2
= + − − ∈ α = α =        (3)  

 
In this study, the following classes of analytic functions 
are defined as: 
 

k k

zf
R ( ) f : f and P ( ), 0 1 ,

f
′� �α = ∈Α ∈ α ≤ α <� �

� �
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k k

(zf )
V ( ) f : f and P ( ), 0 1 ,

f
′ ′� �α = ∈Α ∈ α ≤ α <� �′� �

 

k k 2

zf
T ( , ) f : f and P ( ) for some g R ( ), 0 , 1

g
∗ ′� �

β α = ∈ Α ∈ β ∈ α ≤ α β <� �
� �

 

{ }k kP ( ) f : f and f P ( ), 0 1 .′ ′α = ∈ Α ∈ α ≤ α <  

 
However, k kf V ( ) zf R ( )′∈ α ⇔ ∈ α  is noted and the 
following integral operators are considered. 
 
 L : , for 1, 0; f ,µ

λ Α → Α λ > − µ > ∈Α  
 

 

1
z 1

0

n
n

n 2

t
L f (z) t 1 f (t)dt

z z

( 1) ( n )
z a z ,

( 1) ( n)

µ−
µ λ −
λ λ

λ

∞

=

µ 	 
	 
= λ +µ −� � � �
 �  �

Γ λ + µ + Γ λ += +
Γ λ + Γ λ + µ +

�

�
      (4) 

 

Where Γ  denotes the gamma function and f (z)  is 
given by Equation (1). From Equation (4), the generalized 
Bernardi operator can be obtained as follows: 
 

z 1 n
n0

n 2

1 1
J f(z) t f(t)dt z a z , 1; f

nz

∞
µ−

µ µ
=

µ+ µ+= = = + µ > − ∈Α
µ+�� . 

  
From Equation (4), Equation 5 can be derived:  
 

1 1z(L f(z) ) ( 1) L f(z) ( ) L f(z)µ+ µ µ+
λ λ λ′ = λ + µ + − λ+µ    (5) 

 

The class Α  is closed under the Hadamard product or 
convolution, and is defined by:  



 
 
 
 

n
1 2 n n

n 2

(f f ) (z) z a b z ,
∞

=

∗ = + �  

 
where  
 

. 

 

Using the integral operators of Lµ
λ , we now introduce the 

following classes of analytic functions. 
 
Definition 1. Let f A∈ , 1, 0λ >− µ > . Then 

kf R ( , , )∈ λ µ α , if and only if  

kL f R ( ), 0 1 and z E.µ
λ ∈ α ≤ α < ∈   

 

Definition 2. Let f A, 1, 0.∈ λ > − µ >  Then 

kf V ( , , )∈ λ µ α , if and only if  

 kL f V ( ), 0 1 and z E.µ
λ ∈ α ≤ α < ∈  

 
Definition 3. Let f A, 1, 0.∈ λ >− µ >  Then 

kf T ( , , , )∗∈ λ µ β α , if and only if  

 kL f T ( , ), 0 , 1, z E.µ ∗
λ ∈ β α ≤ α β < ∈   

 
Definition 4. Let f A, 1, 0.∈ λ > − µ >  Then 

kf P ( , , )′∈ λ µ α , if and only if  

 kL f P ( ), 0 1, z E.µ
λ ′∈ α ≤ α < ∈  

 
Remark 1. It is noted that kf V ( , , )∈ λ µ α  if and only if 

kzf R ( , , )′∈ λ µ α  for z E.∈  
 
 
PRELIMINARY RESULTS 
 
Lemma 1 (Miller, 1975)  
 
Let 1 2u u iu= +  and 1 2v v iv= + , and (u, v)Ψ  be a 
complex-valued function satisfying the following 
conditions:  
 

(i) ( u, v)Ψ  is continuous in the domain of 2D ,⊂�  

(ii) (1,0) D and (1,0) 0,∈ Ψ >  

(iii) 2 1Re (iu , v ) 0Ψ ≤ , whenever 2 1( iu , v ) D∈  and  
 

2
1 2

1
v (1 u ).

2
≤ − +  
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If n
n

n 2

h(z) 1 c z
∞

=

= +�  plays an analytic function in E , 

such that (h(z), zh (z) ) D′ ∈  and 

Re ( h(z), zh (z) ) 0′Ψ >  for z E,∈  then Reh(z) 0>  

in E.  
 
 
Lemma 2 
 

Let p(z)  be analytic in E  with p(0) 1=  and 

Rep(z) 0, z E.> ∈  Then, for s 0>  and 1η≠ −  

(complex), 
s zp (z)

Re p(z) 0,
p(z)

′� �
+ >� �+ η� �

 for 0| z | r ,<  

where 0r  is given by  
 

 2 2
0 1

2 2 2

|l |
r , m 2(s ) | | 1,

m (m | 1|)

+η= = +η + η −

+ − η −

   (6).  

 
As such, this radius is exact. For this result, Ruscheweyh 
and Singh (1976) can be referred to for clarity. 
 
 
Lemma 3 
 

Let φ  and g  be the convex and starlike in E. , 

respectively Then, for F  analytic in E , Fg
F(0) 1,

g
Ψ ∗=
Ψ ∗

 is 

contained in the convex hull of F(E).  Lemma 3 is due to 
Ruscheweyh and Shiel-Small (1973). The following result 
is an easy generalization of the one given in Ponnusamy 
(1995). 
 
 
Lemma 4 
 

If p(z)  is analytic in E  with p(0) 1=  and if λ  is a 

complex number satisfying Re 0( 0),λ ≥ λ ≠  then 

k(p zp ) P ( ),0 1,′+ λ ∈ β ≤β<  implies k 1p P ( )∈ β , where 

1 (1 ) (2 1)β =β+ −β γ −  and 
1 Re 1

0
(1 t ) dt ,λ −γ = +�  are 

an increasing function of Reλ  and 1
1 .

2
≤ γ <  This 

estimate is sharp in the sense that the bound cannot be 
improved. 
 
 
MAIN RESULTS 
 
Theorem 1 
 

 Let f A, 1, 0∈ λ >− µ >  and .λ +µ > −α  Then  

����

n n
1 n 2 n

n 2 n 2

f (z) z a z , f (z) z b z
∞ ∞

= =

= + = +� �n n
1 n 2 n
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f (z) z a z , f (z) z b z
∞ ∞

= =

= + = +� �
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k kR ( , , ) R ( , 1, ),λ µ α ⊂ λ µ + β  for 0 1≤α<  
 and  
 

2

2 (2 2 1)

( 2 2 2 1) 4 ( ) 4 ( ) 9

αλ + α µ +β =
λ + µ − α + + λ + µ + α + λ + µ − α +

.      (7) 

 
Proof: 
 
Let kf R ( , , )∈ λ µ α  and  
 

 
1

1 21

z(L f(z)) k 1 k 1
h(z) ( )h (z) ( )h (z)

4 2 4 2L f(z)

µ+
λ

µ+
λ

′
= = + − − ,        (8) 

 
Thus, h(z)  is analytic in E and h(0) 1= . From Equations 
(5) and (8), Equation 9 is obtained:  
 

k

z L f (z ) ) zh (z )
h (z ) P ( ), z E.

h (z )L f (z )

µ
λ
µ
λ

′ ′� �
= + ∈ α ∈� �+ λ + µ� �

       (9) 

 
and defined as: 
 
 j

, 2
j 1

z 1 z ( ) j
(z) z .

1 (1 z) 1 (1 z ) ( ) 1

∞

λ µ
=

	 
 	 
λ +µ λ +µ +φ = + =� � � �λ +µ + − λ +µ + − λ +µ + �  �
�  

 
Then, from Equation (8), Equation 10 is derived:  
 

,

1 , 2 ,

1 2
1 2

1 2

zh(z)
h(z) ( h(z) (z) )

h(z)

k 1 k 1
(h (z) (z) ) ( h (z) (z) )

4 2 4 2

zh (z) zh (z)k 1 k 1
h (z) h (z)

4 2 h (z) 4 2 h (z)

λ µ

λ µ λµ

′� �
+ = ∗φ� �+λ+µ� �

	 
 	 
= + ∗φ − − ∗φ� � � �
 �  �

� � � �′ ′	 
 	 
= + + − − +� � � �� � � �+λ+µ +λ+µ �  �� � � �

  (10)  

 
From Equations (9) and (10), it follows that 
 

i
i

i

zh (z)
h (z) P( ), i 1,2, z E.

h (z)
′� �

+ ∈ α = ∈� �+λ +µ� �
      (11)  

 

Moreover, it is shown that ih P( ),∈ β β  is given by 
Equation (7). 
 
Let i ih (z) (1 ) p (z)= −β +β  in Equation (11). Then, 

for i 1,2=  and z E∈ , we have: 

  
i

i
i

(1 ) z p (z )
(1 ) p (z ) ( ) P .

( 1 ) p ( z )
′� �− β

− β + β − α + ∈� �− β + β + λ + µ� �

 

 
At this instant, a functional (u, v)Ψ  is constructed by 

taking iu p (z)=  and iv zp (z).′=  Thus,  

 
  
 
 

(1 ) v
(u, v) (1 ) u .

(1 ) u
−βΨ = −β +β −α +

−β +β+ λ +µ
 

 
The first two conditions of Lemma 1 are clearly satisfied 
as (u, v)Ψ  is continuous  
 

in  and Re { (1,0) } 0.Ψ >  
 
Then, condition (iii) in Lemma 1 is verified as follows: 

 

1
2 1 2 2 2

2

2
22

1 22 2 2
2

2
2

( ) (1 ) v
Re (iu , v )

( ) (1 ) u

( ) (1 )(1 u )1 1
, with v (1 u )

2 2( ) (1 ) u

A Bu
,

2C

β+λ+µ −β
Ψ =β−α+

β+λ+µ − −β

β+λ+µ −β +
≤β−α− ≤− +

β+λ+µ + −β

+
=

  

Where,  
 

2 2 2
2

A ( ) { 2( ) ( ) (1 )
B (1 ) {2 ( ) (1 ) ( )},

C ( ) (1 ) u 0.

= β+ λ +µ β−α β+ λ +µ − −β
= −β β−α −β − β+ λ +µ
= β + λ +µ + −β >

 

 
It is noted that 2 1Re (iu , v ) 0Ψ ≤  if and only if, A 0≤  

and B 0.≤  From A 0,≤  β  is obtained as given by 

Equation (7) and B 0≤  is realized as 0 1.≤ β <  
Therefore, Lemma 1 is applied to conclude that 

iRe P (z) 0 in E>  and this implies ih P( ).∈ β   

Consequently, kh P ( )∈ β and hence kf R ( , 1, )∈ λ µ + β  

for z E.∈  With 0,α =  it is noted that the result obtained 

is proven in Noor (2006) and the case for k 2,=  and 

α=β , has been studied in Gao et al. (2005) and Noor 
(2006a).  
 
 
Theorem 2 
 
For 1, 0 and ,λ > − µ > λ +µ > −α  

k kV ( , , ) V ( , 1, ),λ µ α ⊂ λ µ + β   
 
Where 0 1≤ α <  and β  are given by Equation (7). 
 
Proof 
 
Applying Remark 1 and Theorem 1, the following are 
observed:  

D , (1,0) D

1

	 

� �
� �= × ∈
� �� �β + λ + µ−� �� �� �−β� � �

�
�

�≤
�≤�≤



 
 
 
 

k k k

k k

1 1
k k

1
k k

f V ( , , ) L f V ( ) z(L f ) R ( )

L (zf ) R ( zf R ( , 1, )

L (zf ) R ( ) z(L f ) R ( )

L f V ( ) f V ( , 1, ).               

µ µ
λ λ

µ
λ

µ+ µ+
λ λ
µ+
λ

′∈ λ µ α ⇔ ∈ α ⇔ ∈ α
′ ′⇔ ∈ α� ∈ λ µ+ β
′ ′⇔ ∈ β ⇔ ∈ β

⇔ ∈ β ⇔ ∈ λ µ+ β

  

 
This completes the proof.  
 
 
Theorem 3 
 

Let 1, 0λ > − µ >  and .λ + µ > − α . Then 

 k k 1 1T ( , , , ) T ( , 1, , ), 0 , 1,∗ ∗λ µ β α ⊂ λ µ + β α ≤ α β<  
 

Where 1α  is given by Equation (7) and 1β  is as given by 
Equation (15). 
 
 
Proof 
 

Let kf T ( , , , )∗∈ λ µ β α . Then, 2g R ( , , )∈ λ µ α  exist such 
that  
 

k

z ( L f (z) )
P ( ), z E.

L g(z)

µ
λ

µ
λ

′
∈ β ∈                                   (11) 

  
We set,  
 

1

1

1 1 1 1 1

z(L f(z))
H(z)

L g(z)

k 1 k 1
{(1 )H (z) } {(1 )H(z) },

4 2 4 2

µ+
λ

µ +
λ

′
=

	 
 	 
= + −β +β − − −β +β� � � �
 �  �

    (12) 

  
where H  is analytic in E  and H(0) 1.=  
 
Since 2g R ( , , ),∈ λ µ α , Theorem 1 was used with 

k 2=  and 1 ,β = α  so that 2 1g R ( , 1, ).∈ λ µ + α  was 
realized. Therefore, Equation 13 can be written as: 
 

1

0 0 11

z ( L g (z) )
H (z), H P( ), z E.

L g(z)

µ +
λ

µ +
λ

′
= ∈ α ∈         (13)  

  
Using Equations (5), (11), (12) and (13) and some simple 
computation, Equation 14 is realized: 
 

 0

1 1
1 1 1

0

1 2
1 2 1 k

0

z(L f(z)) zH(z)
H(z)

H (z)L g(z)

(1 )zH (z)k 1
{( ) {(1 )H (z) }

4 2 H (z)

(1 )zH (z)k 1
( ) {(1 )H (z) }} P ( ), z E. (3.8)
4 2 H (z)

µ
λ

µ
λ

′ � �′
= +� �+λ+µ� �

′−β
= + −β +β +

+λ+µ
′−β

− − −β +β + ∈ β ∈
+λ+µ

  (14)  
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and this implies that  

 1 i
1 i 1 0 1

0

(1 ) zH (z)
(1 ) H (z) P, H P( )

H (z)

′� �−β
−β +β −β + ∈ ∈ α� �+ λ +µ� �

 

for z E, i 1,2∈ = . 
 

The functional (u, v)Ψ  is formed by choosing 

i iu H (z), v zH (z).′= =  Thus, 

 1
1 1

0

(1 ) v
(u, v) (1 )u ( )

H (z)
−β

Ψ = −β + β −β +
+ λ + µ

. 

 
The first two conditions of Lemma 1 are clearly satisfied. 
As such, condition (iii) is verified as follows:  
 

  
 
Where, 
 

 
2

0 1 1 0

1 0

2
0

A 2 | H (z) | ( ) (1 )( Re H (z))

B (1 ) ( Re H ) 0

C | H (z) | 0.

= + λ + µ β − β − − β λ + µ +
= − −β λ +µ + ≤

= + λ + µ >

 

 
Thus, 2 1Re (i , v ) 0Ψ µ ≤  if A 0≤  and Equation 15 is 
realized: 
 

  
2

0 0
1 2

0 0

( ReH ) 2 | H (z)|
( Re H ) 2 | H (z) |
λ +µ + + β λ +µ +

β =
λ +µ + + λ +µ +

     (15) 

 
At this instant, if Lemma 1 is applied, iH P∈  will be 

obtained in E  and therefore in k 1H P ( ).∈ β  

Consequently, k 1 1f T ( , 1, , )∗∈ λ µ + β α  for z E.∈   

In this study, it is noted that, for special choices of k,λ  
and ,µ  several known results, as well as new results, are 
obtained as special cases. 
 
 
Theorem 3 
 

Let kz E, f R ( , 1,0).∈ ∈ λ µ +  Then, kf R ( , ,0)∈ λ µ  

for 0| z | r ,<  where 0r  is given by Lemma 1 with 

,η = λ +µ 2m 7 ( ) and s 1= + λ +µ = . This radius is 
exact.  

1 1 0
2 1 1 2

0

2

1 0 2
1 2

0

2

2

(1 ) v ( ReH )
Re (iu ,v ) ( )                               

|H (z) |

(1 )( ReH ) (1 u)
                     ( )

2 |H (z) |

A Bu
,

2C

−β λ+µ+
Ψ = β −β +

+λ+µ

−β λ+µ+ +
≤ β −β −

+λ+µ

+
=
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Proof 
 
Let,  
 

1

1 21

z (L f (z) ) k 1 k 1
H(z) ( ) h (z) ( ) h (z).

4 2 4 2L f (z)

µ +
λ

µ +
λ

′
= = + − −  

 
Then kH P∈  in E  and consequently ih P∈  in 

E, i 1,2.=  Using Definition 3 with similar argument in 
Theorem 1, we have: 
 

1 2
1 2

1 2

z ( L f (z) ) zH (z)
H(z)

L f (z) H(z)

zh (z) z h (z)k 1 k 1
( h (z) ( h (z) .
4 2 h (z) 4 2 h (z)

µ
λ

µ
λ

′ ′
= +

+ λ + µ

	 
 	 
′ ′	 
 	 
= + + − − +� � � �� � � �+ λ + µ + λ + µ �  � �  �

 

  
Using Lemma 2 with s 1,=  in 

2, m 7 ( ) ,η =λ + µ = + λ +µ  it can be seen that 

i
i

i

zh (z)
h (z) P

h (z)
′� �

+ ∈� �+ λ +µ� �
 for 0 0| z | r , r<  is given by 

Equation (6). This implies that,  
 

 
k 0

zH (z)
H(z) P , for | z | r ,

H(z)
′� �

+ ∈ <� �+ λ +µ� �
  

 

 and consequently kf R ( , ,0 )∈ λ µ  for 0| z | r .<   
 
As a special case, it is noted that 2f R (1,2,0)∈  implies 

that 2f R (1,1,0)∈  for | z | 0.8514.<  That is, 

2f R (1, 2,0)∈  implies that 1J f  is starlike for 

| z | 0.8514< . 
 
 
Theorem 5 
 
Let 1, 0.λ > − µ >  Then 

k kP ( , , ) P ( , 1, ),′ ′λ µ α ⊂ λ µ + δ   
 
Where, 
 

      (16)  
 
which is an increasing function of 1

1λ + µ +
 and 1

1.
2

≤ γ <  

 
Proof 
 

We set 1( L f (z) ) H(z) (1 ) h(z) ,µ +
λ ′ = = − δ + δ  

 
 
 
 
Where H  is analytic in E  with H(0) 1= . Using Equation 
(5) with some computations, we have 
 

1( L f (z) ) H(z) zH (z).µ
λ ′ ′= + λ  

 
At this instant, using Lemma 4, the required result is 
obtained.  
 
  
Theorem 6  
 

Let φ  be a convex function and let 2f R ( , , ).∈ λ µ α  Then 

2f R ( , , ).φ∗ ∈ λ µ α  
 
Proof:  
 
Let G f.= φ ∗  First, the study shows that 

L G L f.µ µ
λ λ=φ∗  

For this, let n
n

n 2

(z) z b z
∞

=

φ = +�  and f (z)  be given by 

Equation (1). Then Equation 17 will be realized as: 
  

n
n n

n 2

( 1) ( n)
L ( f ) (z) z a b z

( 1) ( n )

( L f ) (z)

∞
µ
λ

=

µ
λ

Γ λ +µ + Γ λ +φ∗ = +
Γ λ + Γ λ +µ +

= φ∗

�  (17) 

 
Also, since 2f R ( , , ),∈ λ µ α  it follows that 

2L f R ( ) S ( ),µ ∗
λ ∈ α ≡ α  when S ( )∗ α  is the class of 

starlike functions of order .α  Now, by logarithmic 
differentiation of Equation (17), the following is realized: 
 

 

z (L G(z) ) z ( ( L f ) (z) )
L G(z) ( L f ) (z)

z ( L f (z) )
(z) . L f (z)

L f (z) F L f
,

L f (z) L f

µ µ
λ λ

µ µ
λ λ

µ
µλ
λµ µ

λ λ
µ µ
λ λ

′ ′φ∗=
φ∗

′
φ ∗

φ∗= =
φ ∗ φ∗

 

 

Where 
z (L f (z) )

F
L f (z)

µ
λ

µ
λ

′
=  is analytic in E  and F(0) 1= .  

 
As such, Lemma 3 is used to obtain this result

2( f ) R ( , , ).φ∗ ∈ λ µ α   
When Theorem 6 was applied to the study, Theorem 7 
was realized. 
 
 
Theorem 7  
 
The class  2R ( , , )λ µ α   is  invariant  under  the  following  

�

(1 ) ( 2 1), 1 t dtδ = α + −α γ − γ = +
111

1

0

(1 ) (2 1), 1 t dt

−

λ+µ+
	 


δ = α + −α γ − γ = +� �� �
 �
�



 
 
 
 
integral operators. 
 
(i) 

 
 
(ii) 

  
 
(iii) 

z

3
0

3 3

f (t) f (xt)
f (z) dt, (| x | 1, x 1),

t xt

1 1 xz
( f ) (z), (z) log ( ),

1 x 1 z

−= ≤ ≠
−

−= φ ∗ φ =
− −

�
 

 
(iv)  

 
 
The proof follows immediately, since i cφ ∈  is for 

i 1,2,3,4=  in E.   
 
 
Conclusion 
 
In this paper, some new classes of analytic function have 
been defined by using the linear integral operator.  These  
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new classes are general and they include various known 
classes of analytic functions as special cases. Thus, the 
Miller-Mocanu Lemma has been used to obtain several 
new and interesting results. The results obtained in this 
paper may be viewed as a refinement and improvement 
of the previously known results. 
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