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This work utilizes a modification of the formula of the fractal box counting dimension in which a 
convoluted line of slick embedded in SAR data was divided into small boxes. The method is based on 
the utilization of the probability distribution formula in the fractal box count. The purpose of this 
method is to use it for the discrimination of oil spill areas from the surrounding features, for example, 
sea surface and look-alikes in SAR data, that is, RADARSAT-1 SAR S2 mode and AIRSAR/POLSAR 
data. The results show that the modified formula of the fractal box counting dimension can discriminate 
between oil spills and look-alike areas. The low wind area has the highest fractal dimension peak of 2.9, 
as compared to the oil slick and the surrounding rough sea. Further, modified formula of fractal box 
counting dimension is also able to detect look-alikes and low wind zone areas in AIRSAR/POLSAR data. 
It is interesting to find out that oil spill is absent in AIRSAR/POLSAR data. Both SAR data have a 
maximum error standard deviation of 0.45, which performs with fractal dimension value of 2.9. In 
conclusion, modification formula of fractal box counting dimension is a promising technique for oil spill 
and look-alikes automatic discrimination in different sensor of SAR data. 
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INTRODUCTION 
 
Automatic detection of oil spill and look-alikes in synthetic 
aperture radar (SAR) is a required standard procedures. 
In fact, oil spill and look-alike appeared as dark patches 
in SAR data (Bern et al., 1993; Benelli and Garzelli, 1998; 
Teivero et al., 1998; Calaberesi et al., 1999; Aiazzi et al., 
2000; Marghany et al., 2009a; Marghany and Mazlan, 
2010a). Therefore, the most efficient technique used for 
oil spill and look-alikes discrimination is fractal box 
counting. According to Falconer (2003), fractals are a 
mathematical construct that describes a rough or 
fragmented geometric shape that is divided into similar 
partitions named as self-similarity. Furthermore, self-
similarity, or statistical self-similarity, portraying exact 
self-similarity and quasi self-similarity are used to 
describe fractal. In this context, a fractal  has consequent 
characteristics: (i) it has a simple  and recursive  definition, 
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(ii) self-similar, (iii) irregular to be easily described in 
traditional Euclidean geometric language, (iv) it has a 
Hausdorff dimension which is greater than its topological 
dimension (although this requirement is not met by 
space-filling curves such as the Hilbert curve), and (v) 
fine structure at an arbitrarily small scale (Tricot, 1993). 
Consequently, escape-time fractals, iterated function 
systems, strange attractors, and random fractals, are the 
major techniques to generate fractals. Fukunaga (1990), 
Milan et al. (1993) and Redondo (1996) agreed that exact 
self-similarity is the strongest fractal type than quasi-self-
similarity and statistical self-similarity. Indeed, quasi-self-
similar fractals contain small copies of the entire fractal in 
distorted and degenerate forms and statistical self-
similarity has statistical measures which are preserved 
across scales. Thus, fractal dimension itself is a 
numerical measure which is preserved across scales 
(Pentland 1984; Briggs 1992; Falconer,  2003). Under 
this circumstance, fractal dimension is a statistical 
quantity   which   proposed  of   how   extremely  a  fractal 
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occurs to fill space, as one zooms down to finer and finer 
scales. According to Falconer (2003), the Rényi 
dimension, the Hausdorff dimension and packing 
dimension are most tremendous theoretical fractal 
dimensions (Wornell and  Oppenheim, 1992). Thus, the 
box-counting dimension and correlation dimension 
practically are widely used, partially because of  their 
ease of implementation. Although for some classical 
fractals all these dimensions do coincide, in general they 
are not equivalent (Fukunaga, 1990; Falconer,  1990; 
Milan et al., 1993; Redondo, 1996). 

The most well known procedures that have been 
proposed for estimating the fractal dimension of SAR 
images are box counting, fractal Brownian motion 
(Falconer, 1990; Gado and Redondo, 1999; Benelli and 
Garzelli, 1999) and fractal interpolation function system 
dimension of images (Aiazzi et al., 2001). Initially, 
Falconer  (1990)  introduced the fractional Brownian 
motion model with SAR image intensity variation, which  
promises in the SAR data textures. In fact, both the sea 
surface and its backscattered signal in the SAR data can 
be modeled as fractals (Wornell and Oppenheim, 1992; 
Maragos and Sun, 1993; Benelli and Garzelli, 1999; 
Aiazzi et al., 2001). Recently, Marghany et al. (2007, 
2009a, b) have introduced a new formula of fractal box 
counting dimension. They modified the main fractal 
equation using probability disribution function formula. 
Marghany et al. (2009b) found out that the new fractal 
formula identifies properly the deficiency of oil spills in 
pairs of RADARSAT-1 SAR S2 mode data. Nevertheless, 
the new formula increased the fractal values in the area 
of ships, which differed from previous work of Garzelli 
(1999) and Aiazzi et al. (2001). 

By contrast, Gado and Redondo (1999) found that a 
box counting fractal dimension model provided excellent 
discrimination between oil spills and look-alikes, although 
the backscatter information, which could allow a first 
robust localization of the oil spills, had not been 
considered. Furthermore, Benelli and Garzelli (1999) 
used a multi-resolution algorithm which was based on 
fractal geometry for texture analysis. They found that the 
sea surface is characterized by an approximately steady 
value of fractal dimension, while the oil spills have a 
different average fractal dimension compared to look-
alikes. 

This study has theorized that the dark patches (oil slick 
or look-alike pixels) and their surrounding backscattered 
environmental signals in the SAR data can be modeled 
as fractals. In this context, a box-counting fractal 
estimator can be used as a semiautomatic tool to be 
discriminate between oil spills, look-alikes and 
surrounding sea surface waters. In addition, the utilization 
of a probability density formula in the box-counting 
equation can improve the accuracy of discrimination 
between oil slick pixels and surrounding feature pixels 
such as ocean surface and look-alikes. This study is the 
extension of previous studies of  Marghany  et  al.  (2007, 

 
 
 
 
2009a, b) where airborne AIRSAR and POLSAR data 
used to validate the accuracy of modified fractal formual 
for discrimination between oil slicks and look-alikes.  
 
 
METHODOLOGY 
 
Data set 
 
SAR data acquired in this study were derived from the RADARSAT-
1 and AIRSAR/POLSAR images. RADARSAT-1 SAR data that 
involve standard beam mode (S2) images.  S2 data are C-band and 
have a lower signal-to noise ratio due to their HH polarization with a 
wavelength of 5.6 cm and a frequency of 5.3 GHz. Further, S2 data 
have 3.1 looks and cover an incidence angle of 23.7° and 31.0° 
(Farahiday et al., 1998; Marghany and Mazlan, 2010a). In addition, 
S2 data cover a swath width of 100 km.  Both Mohamed et al. 
(1999) and Marghany et al. (2009a) reported the occurrence of oil 
spill pollution on 20 December 1999, along the coastal water of the 
Malacca Straits.  

The Jet Propulsion Laboratory (JPL) airborne, Airborne Synthetic 
Aperture Radar (AIRSAR) data.  AIRSAR is a NASA/JPL multi-
frequency instrument package aboard a DC-8 aircraft and operated 
by NASA’s Ames Research Center at Moffett Field. AIRSAR flies at 
8 km over the average terrain height at a velocity of 215 ms-1. The 
system is designed to be flown on small and large aircraft. The 
system requires a scanner port (18 cm x 36 cm) on the aircraft 
underside. JPL's airborne synthetic aperture radar (AIRSAR)  is a 
unique system, comprising three radars at HH-, VV-, HV- and VH-
polarized signals from 5 m x 5 m pixels recorded  for three 
wavelengths: C band (5 cm), L band (24 cm) and P band (68 cm) 
(Zebker, 1992). AIRSAR data collections are involved; fully 
polarimetric data (POLSAR) can be collected at all three 
frequencies, while cross-track interferometric data (TOPSAR) and 
along-track interferometric (ATI) data can be collected at C- and L-
bands (Marghany et al., 2010b; Marghany and Hashim, 2010c). 
 
 
Fractal algorithm for the oil spill identification 
 
The oil slick detection tool uses fractal algorithms to detect the self-
similar characteristics of RADARSAT-1 SAR and AIRSAR/POLSAR 
data intensity variations. A box-counting algorithm introduced by 
Benelli and Garzelli (1999) was used in this study. The box 
counting algorithm was used to divide a convoluted line of slick 
which was embedded in both SAR data plane (i,j), into smaller 
boxes. This was done by dividing the initial length of the convoluted 

line of the slick at backscatter level sβ  by the recurrence level of 

the iteration (Gado and Redondo, 1999). Marghany et al. (2009a, b) 

defined a decreasing sequence of backscattering sβ  tending from, 

the largest value, to less than or equal to zero. Following, Gado and 

Redondo (1999), the fractal dimension D ( sβ ) as a function of the 

RADARSAT-1 SAR image intensity sβ
is given by:  
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where, )( sM β  denotes the number of boxes which are needed 

to cover the various slick areas with different backscatter 

intensity sβ  in both SAR data. In addition, the subscript s  indicates 



 
 
 
 
the backscatter amplitude and its unit is dB. In practice, it is difficult 

to compute )( sD β using Equation (1) due to the discrete 

RADARSAT-1 SAR and AIRSAR/POLSAR data surfaces, and so 
approximations to this relationship are employed. First, the 
RADARSAT-1 SAR and AIRSAR/POLSAR intensity images β  is 

treated as a two-dimensional matrix )( ββ × . This 

ββ × intensity image matrix has been divided into non-

overlapping or abutted windows of size ll × , where l is the length 

of the convoluted line of the slick in both SAR data )( ββ × . In 
addition for each window, there is a column of accumulated boxes, 

each box with size of ll s ×2
. The backscatter values )( 0β are 

stored at each intersection of the column i and row j of the various 
slick areas.   Then l is calculated by using the differential box 
counting proposed by Sarkar and Chaudhuri (1994).  
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The number of boxes was non-overlapping which was calculated 
from the fractal dimension algorithm and having a square shape 

with side length sl unit. This sl is an odd, positive integer centred 

on an arbitrary point in the RADARSAT-1 SAR and 

AIRSAR/POLSAR backscatter images sβ surface. Therefore, side 

length was needed to cover a fractal profile, of  backscatter 

image
D

s
−β , where D is the fractal dimension that is to be 

estimated. Moreover, the box numbers were chosen based on the 

length of convoluted line of slick at backscatter level sβ . If the 

profile being sampled is a fractal object, then )( sM β  should be 

proportional to 
D

s
−β (Milan et al., 1993).  

Let ]),([ ss lMP β be the probability of the total number of 

boxes )( sM β with box sizes sl . This probability should be 

directly proportional to the number of boxes 

1)()(
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mn ββ  spanned on the ),( ji  windows.  

According to Marghany et al. (2009a, b) the expected number of 

boxes with size sl which is needed to cover the slick pixels can be 

calculated using the following formula: 
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According to Fiscella et al. (2000), the probability distribution of the 
dark area belonging to slick pixels can be calculated using the 
formula below: 
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Let  1)()(
,
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mnn ββ , q and p are the probability 

distribution functions for look-alike and oil spill pixel areas, 
respectively. From Equations (3), (4) and (1) one can get a new 
formula for estimating the fractal dimension DB 
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According to Marghany et al. (2009a), Equation 5 represents the 
modification formula of Equation 1. In practice, the limit of M going 
to zero cannot be taken as it does not produce a texture image for 
oil spills or look-alikes in SAR data. Following Marghany et al. 
(2007), we may divide the slick’s pixel areas into overlapping sub-
images, using fractal dimensions to quantize texture for 
segmentation. Each sub-image is centred on the pixel of interest. 

We then estimate the fractal dimension )( sD β  within each sub-

image, and assign the fractal dimension value to the central pixel of 
each sub-image. This will produce a texture image that may be 
used as an additional feature in slick pixel classification. 
 
 
RESULTS AND DISCUSSION  
 
The new fractal formula proposed by Marghany et al. 
(2009a, b) was trained on three SAR data, whereas the 
dark spots were identified and examined. The 
RADARSAT-1 SAR S2 mode image contained the 
confirmed oil spills that occurred 20 December 1999 
(Samad and Shattri, 2002; Marghany, 2004; Marghany et 
al., 2009a) (Figure 1a). S2 mode data covered an area 
located in between 101° 01' 01.01'' E to 101° 17' 11.5'' E 
and 2° 25' 38.6'' N to 2° 34' 23.5'' N. The validation of 
new fractal formula was examined on pairs of 
AIRSAR/POLSAR data, which were acquired on 3 
December 1996 from the coastline of Kuala Terengganu, 
Malaysia between 103° 5' E to 103° 9' E and 5° 20' N to 
5° 27' N. The POLSAR data was acquired on 19 
September 2000 from 5°11' N to 5° 12' N and 103’ 12' E 
to 103° 13' E along the southern of Kuala Terengganu, 
Merang port (Figures 1b and 1c) (Marghany et al., 
2009b). 

Figure 2 shows the variation of the average backscatter 
intensity along the azimuth direction in the oil-covered 
areas as a function of incidence angles for the S2 modes.  
The backscattered intensity was damped -10 dB to -18 
dB in S2 (Figure 2). However, both AIRSAR/POLSAR 
data had higher backscatter intensities as compared to 
S2 mode data (Figure 2). Further, S2 and 
AIRSAR/POLSAR data backscatter intensities were well 
above noise floor value of nominally –20 dB.  Indeed, 
RADARSAT-1 SAR is a C-band instrument with a 
variable acquisition swath, presenting a large variety of 
possible incidence angles, swath widths, and resolutions 
(Marghany et al., 2009a; Marghany and Mazlan, 2010a). 
Oil slicks can be detected with a contrast  as  small  as  4
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(a)                                                                        (b) 
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Figure 1. Oil spill in (a) RADARSAT-1 SAR S2 mode data and look-alikes at (b) AIRSAR data and (c) 
POLSAR data. 

 
 
 

 
 
Figure 2. Radar cross section intensity along dark spots in SAR data. 



Marghany and Hashim        1715 
 
 
 

 
(a)                                                                 (b) 

     
(c ) 

 
  

 
Figure 3.  Fractal map for (a) RADARSAT-1 SAR S2 mode data and (b) AIRSAR and (c) POLSAR. 

 
 
 
dB (Kotova et al., 1998; Farahiday et al., 1998; Lu et al., 
2000). This suggests that a large part of the RADARSAT-
1 swath could be useful for oil slick detection. 
Nevertheless, Ivanov et al. (2002) reported that the 
RADARSAT-1 SAR, in its ScanSAR Narrow mode with 
swath width above 300 kms, was attractive for marine oil 
pollution detection.  

The wind speed conditions acquired from the 
Malaysian Meteorological Survey Department showed a 
maximum offshore wind velocity of 4 m/s during the 
AIRSAR/POLSAR data overpass and 6.4 m/s and the 
acquisition of S2 mode data, respectively (Figure 2). In 
addition, the oil spill in the S2 mode with shallower 
incidence angle was between 23° and 27° (Figure 2), 
whereas in the AIRSAR/POLSAR data the dark spots 
were imaged by steeper incidence angles between 40° 
and 60° (Figure 2).  According to Marghany and Mazlan 
(2005), steeper incidence angles are preferred for oil spill 
detection, since they tend to maximize the signal from the 
ocean surface. Our results of backscatter variations 
across oil spill locations agreed with the study of 
Marghany and Mazlan (2005). 

The proposed method to estimate the fractal dimension 
was applied to the amplitude multi SAR data, by using a 
10 x 10 block (Figure 3). The fractal dimension maps 
showed a good discrimination between different textures 
on the RADARSAT-1 SAR image and correlated well with 
image texture regions. This could be clearly noticed at 
area (H) where the ship and wake were well identified 
(Figure 3). The oil spill pixels were dominated by lower 
fractal values than look-alikes and surrounding 
environment (Figure 3a). In Figure 3a, the fractal values 
of oil spill regions varied between 1.49 and 2. According 
to Marghany et al. (2009a), the oil spill becomes thinner 
when the fractal dimension value increases. This could 
be noticed in areas A to C. In AIRSAR/POLSAR, 
however, oil spill is absent (Figures 3b and 3c). Indeed, a 
thick oil spill dampens the small-scale waves and 
therefore there is no Bragg resonance, which reduces the 
roughness of sea surface as compared to a thin oil spill 
(Bern et al., 1993). In this context, the fractal dimension is 
a function of sea surface level intensities over multi SAR 
data, which express the self-similarity (Benelli and 
Garzelli, 1999). In AIRSAR/POLSAR and S2  mode  data,
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Figure 4. Fractal values for different features in RADARSAT-1 Standard (S2) mode and 
POLSAR/AIRSAR data (a) Oil spill, (b) Look-alikes, (c) ships, (d) shear current, and (e) low wind zone. 

 
 
 
it could further be seen that low wind zones in areas M, N 
and O occurred close to the coastline, with maximum 
fractal values equal to 2.33, 2.34 and 2.5, respectively 
(Figure 3). Look-alikes occupied narrow areas parallel to 
the coastline (Figure 6). The wide distribution of dark 
zone pixels represented the natural slick in low wind 
areas (Henschel et al., 1997), which was aligned with 
what could be a current shear or convergence zone. This 
could be seen clearly in S1 mode data (Figure 3a). Thus, 
the fractal algorithm was able to discriminate the look-
alike features from the surrounding sea surface features 
such as current shear (Figure 3a). Figure 3b illustrates, 
however, larger areas of look-alikes as compared to 
Figure 3a.  The  fractal  dimension  values  of  look-alikes 

and ships are shown in Figures 3a, 3b and 3c were 
approximately similar. 

In contrast to the S2 mode data, the fractal dimension 
values of look-alikes in AIRSAR/POLSAR data were 
higher (Figure 4a). In the AIRSAR/POLSAR, areas F and 
E represented the occurrence of look-alikes. Figure 4e 
shows that areas E and F (Figure 4b) in the POLSAR 
data corresponded to fractal dimension values 2.6 and 
2.8, respectively, whereas area E corresponded to a 
fractal dimension equal to 2.6 in S2 mode data (4e). 
Figure 4c shows the highest fractal dimension values of 
3.9 and 4.0 in areas I and G, respectively, were 
represented by the presence of a ship, whereas ship 
waves had a lower fractal dimension values, between 2.4
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Figure 5. ROC Curve for different feature detection in SAR data. 

 
 
 

 
 
Figure 6. Accuracy assessment of fractal dimension performance. 

 
 
 
and 3.6 in area H in AIRSAR/POLSAR and S2 mode 
data, respectively (Figure 4c). Furthermore, the 
occurrence of shear current flow could be seen in areas 
J, K and L, respectively in S2 mode data (Figure 4d). It 
was interesting to find that the fractal dimension 
algorithm-based probability was able to extract ship wake 
information in area H with a value of 3.9 (Figure 3a). This 
suggests that the corresponding value of fractal 
dimension for different categories allows a multi-fractal 
characterization of different features in different SAR 
data. These results confirmed the studies of Marghany 
and Mazlan (2009 a, b). 

The receiver-operator characteristics (ROC) curve in 
Figure 5 illustrates significant differences in discrimination 

between oil spill, look-alikes, and sea surface roughness 
pixels. In terms of ROC area, this evidence was provided 
by an area difference of 15% for oil spill and 45% for sea 
roughness and a p below 0.005, which confirms the study 
of Marghany et al. (2009a, b). Indeed, the fractal 
dimension could be viewed as a measure of the scale of 
the self-similarity of the object. Also, the interference was 
statistically similar if the scale was reduced, similar to the 
result of Bertacca et al. (2005). This suggests that a 
fractal analysis is a good method to discriminate regions 
of oil slick from surrounding water features. 

Figure 6 shows an exponential relationship between 
fractal dimension and the standard deviation of the 
estimation error for the fractal dimension.  The  maximum 
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error standard deviation was 0.27, corresponding to the 
fractal dimension value of 2.9, which was found in S2 
mode data. For oil spill detection, the minimum error 
standard deviation of 0.02 occurred in a region of fractal 
dimension of 1.49 in S2 mode data. For 
AIRSAR/POLSAR data, the maximum error standard 
deviation is 0.4 which corresponds to the fractal 
dimension value of 2.8. This means that the S2 mode 
performed better for detection of oil spills. In fact, the S2 
mode showed a shallower incident angle than 
AIRSAR/POLSAR data. Wind speeds below 6 m/s are 
appropriate for detection of oil spills in SAR data (Solberg 
and Volden, 1997). Therefore, for applications that 
require imaging of the ocean surface, steep incidence 
angles are preferable as there is a greater contrast of 
backscatter manifested at the ocean surface. 

A good discrimination between oil spill, look-alike, low 
wind zone and sea surface roughness exists when the 
error standard deviation is between 0.002 and 0.45, as 
produced by implementation of the fractal modified 
formula. The reason is that the fractal dimension is a 
measure of the scale of the self-similarity of the object. 
The low standard deviation error value of 0.002 for fractal 
area of 1.49 dominated by the oil spill was lower than that 
for the surrounding sea. This is an excellent indicator for 
the validation of the fractal formula modification by 
implementing a probability distribution function (PDF). 

The fractal dimension based on the probability 
distribution function (PDF) improves the discrimination 
between oil spill, look-alikes, sea roughness and low wind 
zones. In fact, involving the PDF formula in the fractal 
dimension map directly relates the textures at different 
scales to the fractal dimension. Such a modification of the 
fractal equation reduces the problems of speckle and sea 
clutter and assists in the accurate classification of 
different textures for SAR images. 

Previous studies were concerned with automatic 
detection of oil spills from SAR images, which is based 
on dark spot feature extraction and classification (Solberg 
and Solberg, 1996; Solberg and Volden, 1997; Benelli 
and Garzelli, 1999; Mohamed et al., 1999; Marghany, 
2001; Marghany and Genderen, 2002; Samad and 
Shattri, 2002; Marghany and Mazlan, 2010d; Marghany 
and Mazlan, 2011). In contrast to the present study, 
those studies failed to detect the oil spill spreading and to 
discriminate between the current shear features, ship 
pixels, sea surface roughness and oil spill pixels by using 
different segmentation algorithms (Solberg and Solberg, 
1996; Solberg and Volden, 1997; Mohamed et al., 1999; 
Samad and Shattri, 2002) or the classical fractal formula 
(Benelli and Garzelli, 1999; Marghany and Mazlan, 
2011). Indeed, the different oil spill segmentation 
approaches, in terms of accuracy of classification of oil 
spills and features of the surrounding sea, are a 
challenging task; the modification of the algorithms used 
for automatic detection of oil spills might be required to 
improve the analyses (Marghany and Mazlan, 2010a). 

 
 
 
 
Conclusions 
 
The utilization of multi SAR imagery for oil slick detection 
has been implemented by using a fractal dimension 
algorithm as an automatic tool to discriminate between an 
oil slick and other surface features such as slick look-
alikes and variability of surface roughness. The oil spill 
has characteristic values of fractal dimension, which 
ranged between 1.49 and 2.0. The sea surface 
roughness has a steady value of fractal dimension which 
is 2.6. The interesting result is that the low wind area was 
characterised by the highest value of fractal dimension 
which is 2.48. In AIRSAR/POLSAR data, the look-alike 
due to natural slick has characteristic values of fractal 
dimension, which ranged between 1.6 and 2.0. The sea 
surface roughness has a steady value of fractal 
dimension which is 2.4. The interesting result is that the 
ship pixels were characterised by the highest value of 
fractal dimension which is 3.9. The maximum error 
standard deviation of 0.45 which performs with fractal 
dimension value of 2.9 is found in both SAR data. It can 
be said that the new approach of the fractal box counting 
dimension algorithm can be used as an automatic tool for 
oil spill, and look-alike detections in different sensor of 
SAR data. 
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