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A class of exponentially fitted third derivative methods of order eight for solving stiff initial value 
problems in ordinary differential equations is derived. The derivation of the method which allows free 
parameters is cast into predictor-corrector form for efficient implementation. The analysis of the 
method shows that it is A-stable. The numerical implementation of the method to standard stiff 
problems shows that it is more efficient when compared with some existing methods which some the 
same set of problems (12000 Mathematics subject classification: primary: 65L05; Secondary 65L06, 
65L20). 
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INTRODUCTION 
 
We shall consider initial value problems of ordinary differ-
rential equations of the form. 
 

( ) ( ) η==′ ayyxfy ,,                                              (1.1)                               

Where ( )T
nyyyy ,...,, 21=  and ( )nηηηη ...,, 21= . 

It is assumed that the function f(x,y) is defined and 
continuous in the region ψ  defined as, 

nRR×=ψ , where [ ]baR ,=  is a finite closed interval 

on the real line and nRy ∈ . In addition, the function f(x,y) 
also satisfies a Lipschitz condition of order one with 
respect to y. 
 
Definition 1.1: A numerical integration formula is said to 
be exponentially fitted at a complex value 0λλ =  if when 
this applied to test function. 
 

( ) 00, yxyyy ==′ λ .                                               (1.2) 
 
with exact initial condition, the characteristic equation ρ  

satisfies the relation ( ) heh 0
0

λλρ =  
Definition 1.2: A differential system of the form (1.1) is 
said to be stiff over a finite interval [ ]ba,  if for 

every [ ]bax ,∈ , the eigen values ( ) nixi ,...,2,, =λ  of 
the Jacobian matrix arising form (1.1) satisfies the 
following equations: 

1.   ( ) nixi ,...,2,1,0Re =<λ  and 
2. The stiffness ratio 

= 
( )
( ) ni
x

x
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Remax

=>>
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These classes of problems has a lot of applications in 
many areas such as control theory, chemical kinetics, 
electrical circuit theory, mechanical, biological and econo-
mics systems. However, most conventional numerical 
integration solvers can not cope effectively with stiff 
problems as they lack adequate stability characteristics. 
So, A-stability, a concept introduced by the author in 
Dahlquist (1963) is widely used in connection with stiff 
systems. 
 

 Definition 1.3: A numerical integration scheme is said to 
be A-stable if the region of absolute stability contain the 
whole of the left-hand half of the complex plane. 
   Several authors including (Liniger and Willoughby, 
1970; Abhulimen and Otunta, 2005; Makela et al., 1974; 
Cash, 1981; Okunuga, 1904; Vigo et al., 2005; Vigo and 
Martin 2007, 2006) have earlier proposed exponentially 
fitted methods to guarantee stability properties for stiff 
systems of ordinary differential equations (ODEs). We 
shall however, adopt the mechanism in (Otunta and 
Abhulimen, 2005; Cash 1981; Abhulimen and Otunta, 
2007) to construct formula which possesses adequate 
stability characteristics to cope with stiff systems, for 
which exponential fitting is appropriate. 



 
 
 
 
Development of the integration formula 
 
The general multistep methods consider is given by 
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Where, ( )
jn

if +  is the ith derivative of f(x,y) evaluated at 

( )jnjn yx ++ , , jα  and ji ,φ  are real constant with 

jnk y +≠ and0α  is the approximate numerical solution 

evaluated at the point jnx + . 

The aim of this paper is to derive a third derivative 
exponentially-fitted order eight. So for effective imple-
mentation of the method, we cast the method into pre-
dictor corrector from, hence we reduce equation (2.1) as 
follows;  
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Assume, jijjjij ,3,2, and, φωφγφβ ===  so that 

equation (2.2) now becomes; 
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are respectively the first, second and third derivatives of 
yn+j. 

However, since the implementation of the method 
involves predictor-corrector form, equation (2.3) becomes 
the predictor and equation (2.4) below serves as the 
corrector. 
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In order to remove the arbitrary constant in (2.3), and 
(2.4), we shall always assume that 1+=kα , 
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To obtain a two-step method of order eight  predictor  for- 
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formula, we expand (2.3), using Taylor series to obtain 
eight set of simultaneous equation with eleven unknown 
parameters. In order to solve for unknown parameters, 
we assume a== 21 and,0 βω  as free parameter with 

12 =α to obtain the following equations; 
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Solving the above equations, we obtain the values of the 
unknown parameters as; 
 

,10 −=α  

aa ==−= 235
32

135
38

0 ,, βββ  

aaa 15
7

525
73

215
16

525
294

115
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193

0 ,, −=−=−= γγγ  

aa 15
1
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8

0 , +=−= −ωω  
 

Substituting these values into (2.3), we then have the 
predictor integrator of order 8 as;  
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For the purpose of exponential fitting conditions, we apply 
equation (2.5) to test function  
 

( ) qhyyy ===′ λλ ,10,                               (2.6) 
 
We obtain, 
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For the purpose of stability of the method, we need to 
obtain the free parameter ‘a’ from (2.7) as  
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Similarly to obtain the method of order eight corrector 
formula, we expand equation (2.4) by Taylor series to 
obtain nine set of simultaneous equations with twelve 
unknown parameters. To solve the set of equations, we 
let b=3β  as the free parameter, and imposing similar 
condition as in the predictor, we then obtain nine simulta-
neous equations from equations follows; 
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Solving the equation, the following parameters are 
obtained as;  
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By substituting the values of the parameters in equation 
(2.4), we obtain the method of order eight corrector 
formula as,  
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As it was done in the predictor, we apply (2.9) to scalar 
test function (2.6), to obtain, 
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Equation (2.10) now becomes the predictor-corrector 
method of order eight. For the purpose of stability of this 
method, we obtain the free parameter b as; 
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Stability of the method   
 

Now, in order to investigate the stability of the method, 
the determination of the values of the free parameters a 
and b in the open left-half plane ( ]0,∞−  become very 
important. Hence, it is necessary to find the criteria which 
a and b needs to satisfy, such that, 
 

12 <+

n
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y
y , that is; ( ) 1<qR  for all q                            (3.1) 

 
 
 
                                           

Table 1. Parameter values of a(q) and b(q) 
corresponding to values of q. 
 

q a(q) b(q) 
-5 0.66068 -0.00140 

-30 0.66312 -0.00552 
-40 0.66853 -0.00612 
-50 0.67185 -0.00651 

-100 0.67867 -0.00741 
-200 0.68217 -0.00792 
-500 0.68429 -0.00824 

-1000 0.68500 -0.00835 
-2000 0.68536 -0.00841 

 
 
 
However, necessary and sufficient conditions for equa-
tion (3.1) to hold is given by the application of the maxi-
mum modulus theorem (Cash,1981). 
That is,  
 

R(q) analytic for Re(q)<0 
( ) ( ) 0Reon1 << qqR  

 

If condition (i) holds, it follows that R(q) is analytic as 
∞→q  and thus (i) and (ii) will guarantee A-stability. 

Now, if we consider 12 <+

n

n

y
y , then for 

n

n

y
y 21 +<−  is true. 

So, for 12 <+
yn

yn , we have from equations (2.8) and (2.11), 

that a<1 and b<0. 
 Furthermore, we show analytically that a and b 
have finite limits. 
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To obtain the limiting value of a as 0→q  from (2.8), we 
apply L’ Hospital rule at eight stages involving tedious 

and careful differentiation to yield 
9
8

0
=

→
aLim

q
 that is for 

( ]0,∞−∈q , ( )35
24

9
8 ,∈a .  

 

Similarly, for the finite limits of b as ∞→q , we have from 
equation (2.11) 
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Now, to obtain the limiting value of b as 0→q , we apply 
L’Hospital rule at nine stages to yield, 
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That is for ( ]0,∞−∈q , ( )945
4

135
8 , −−∈b . Thus, the stability 

intervals of this method are given by: 
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Table 2.  Numerical result on Non-linear stiff problem 1. 
 

Step length h Method y1 Y2 y3 
0.0625 AB8 0.5884667145 1.0090563343 -2.7919757498 

0.1 AB8 0.5882826902 1.0092403584 -2.7914604809 
Exact solution 0.5882826881 1.0092403605 -2.7914604750 

Errors 
0.0625 AB8 -1.8 x 10-4 1.8 x 10-4 5.2 x 10-4 

0.1 AB8 -2.2 x 10-8 2.2 x 10-9 6.3 x 10-9 
 
 
 

Table 3. Efficiency of method of order eight on problem 2, for h = 0.5, [ ]5,0∈x . 
 

Step 
length h 

x 
 

Exact solutions 
( ) 4,...,2,1, =ixyi  

Approximated solution 
( ) 4,...,1, =ixy ni  

Absolute errors 
( ) ( ) 4,...,1, =− ixyxy nii

 

0.5 1.000 0.90237405E+00 
0.4584262E-04 

-0.8224315E+01 
0.9056815E-02 

0.9023740E+00 
0.458422E-04 

-0.8224315E+01 
-0.9056815E-02 

0.1110E-04 
0.3004E-05 
0.000E+00 
0.1421E-02 

 2.000 0.81873075E+00 
0.20310425E+01 
-0.7412006E+01 
-0.8065206E-02 

0.81873075E+00 
0.20510425E+01 
-0.7412006E+01 
-0.8065206E-02 

0.1100E-04 
0.3524E+05 
0.8661E+00 
0.1200E-02 

 3.000 0.72061710E+00 
0.9346411E-05 

-0.6624610E+01 
-0.7206061E-02 

0.76061710E+00 
0.9346411E-05 

-0.6624610E+01 
-0.7206061E-02 

0.2010E-05 
0.23544E-06 
0.1664E+04 
0.2621E-03 

 4.000 0.6603200E+00 
0.426232E-05 

-0.6072605E+01 
-0.6602100E-02 

0.6603200E+00 
0.4126232E-05 

-0.6072605E+01 
-0.6602100E-02 

0.2110E-06 
0.1276E-08 
0.1664E-06 
0.1310E-05 

 5.000 0.6003204E+00 
0.1916538E-07 

-0.5312130E+01 

0.6003204E+00 
0.1916538E-07 

-0.5312130E+01 

0.2110E-06 
0.8302E-10 
0.1664E-06 

 
 
 

( ) ( )945
4

135
8

35
24

9
8 and, −∈∈ −ba . 

By analytic procedure, we can verify that a and b are 
contained in the stability interval for all values of 

( ]0,∞−∈q , as shown in Table 1. 
So, from Table 3 above, all the values of a and b are 
bounded within the ranges of ( )35

24
9
8 ,∈a and 

( )945
4

135
8 , −−∈b  for all ( ]0,∞−∈q . And also, as q 

decreases both a and b increases monotonically. We 
have that within these ranges of values of a and b, the 
predictor-corrector formula will be A-stable for all choices 
of fitting parameters. Infact, the stability function of the 
predictor-corrector method of order eight is given in 
equation (2.10). when we compute for R(q) for all values 
of a and b within their specified intervals above, we have 

( ) 1<qR  for all ( ]0,∞−∈q , satisfying the inequality 

(ii) in equation (3.2), hence, the exponentially fitted 
method of order eight is A-stable for all choices of values 
of free parameters. 
 
 
NUMERICAL COMPUTATIONS AND RESULTS 
 
To show the effectiveness and validity of our newly 
derived methods, we present some numerical examples  
below. All numerical examples are coded in FORTRAN 
77 and implemented on digital computer.  
 
Problem 1: Non-linear stiff problems: Chemical 
Kinetic problem  
 
The authors (Enright and Pryce, 1983) discussed the 
application of integration formulae based on two 
FORTRAN packages for assessing IVPs using the 
following non-linear stiff problems to illustrate the method. 
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Table 4 Comparison of results on problem 3. 
 

 (ERRORS) 
Method Step y1(1) y2(1) y3(1) y4(1) 

ERA8 
ERK7 

0.05 
 

-2.7 x 10-2 

1.3x103 
-2.7 x 10-1 

1.3x 103 
2.5 x 10-3 

-1.1 x 101 
-2.7 x 10-5 

1.3x 10-3 
ERA8 
ERA7   

0.1 
 

-8.4 x 10-2 

-2.7 x10-2 
-8.6 x 10-1 

2.1x10-1 
7.3 x 10-3 

-2.4x10-3 
8.6 x 10-5 

2.7x10-4 
 

The exact solutions of problem 3 are given as follows;                                        
Y1(1) = -5911.90736573 
Y2(1) = -596.61978376 
Y3(1) = 5.36957981 
Y4(1) = 0.05966201 
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1010000130
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13111
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y,      yy-yyy.y

       y                    ,         yyy

 y          ,         yyy.y
                             

 
The eigenvalues of the system are given as 

003714.3500,00928572.0,0 321 −=−== λλλ . The 
stiffness ratio is 376923.14. the exact solution is given by 

3. 2, 1,  2 =+= jeDCy x
jjj

λ  Cj and Di are determined 

using the initial value conditions.               
The numerical results of problem 1 the method at x=1 

is given in Table 2. We denote our method of order eight 
by AB8. 

We observed from our numerical results in Table 4 that 
the error tolerance could be raise to 10-9 as against 10-4 
prescribed in Enright and Pryce (Enright and Pryce, 
1983). The result obtained at x=1 for h=0.0625 involves 
eight steps. While for h=0.1, it requires only five steps. 
Thus the result for h=0.1 has a higher degree of 
accuracy. 
 

Problem 2: Consider the stiff system of ODEs by 
enright  
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The error tolerance given by Enright is 10-6.The eigen 
values of the system are the non-zero element in the 
leading diagonal of the Jacobian. The stiffness ratio is 
given as 104. The exact solution is given 
as x

i
x

ii eBeAy 21 λλ += . While the values of iA  and iB  
are determined from the initial condition imposed on the 
derivations of ( )xy . The numerical results are given in 
Table 2. 

From Table 3, we observed that our method has low 
error tolerance up to 10-11 which is far better than the 
error prescribed in Enright.  

Problem 3: Test problem from Enright and Pryce [7] 
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The eigenvalues arising from the Jacobian of the system 
are 
  .10000,1000,1,1.0 4321 −=−=−=−= λλλλ  
The stiffness ratio of the system is 100000. The  general 
exact solution is in the form of 

( ) 4,3,2,1=+= iixeiBieiAxiy λλ , where, ii BA ,  are 

constants to be determined using the initial conditions. 
The numerical results of problem 3 are given in Table 4.  
For the purpose of comparison, we denote errors in 
(Okunuga, 1904), method of order 7 and (Abhulimen, 
2006) method of order 7 as ERK7 and ERA7 respec-
tively. While we represent errors in present method of 
order 8 as ERA8, as shown in the Table 4. 
Note: Discretization error is denoted by E, so that 
  

( ) ( ) 4,3,2,1; =−= ixyxYE ii  
 
Where Yi(x) is the exact solution of the problem, and yi(x) 
is the numerical solution. From the numerical result 
displayed on Table 4, our present method of order 8 is 
comparatively more efficient and accurate than methods 
(Okunuga, 1904) and (Abhulimen and Otunta, 2007). 
 
 
Conclusion 
 

From the above results in Tables 2, 3 and  4, it  can  
beseen that our proposed method of order eight is A-
stable, more efficient and accurate when compared with 
existing methods of Okunuga, (1904) and Abhulimen and 
Tunta 2007), which have solved the same sets of stiff 
IVPs problems. 



 
 
 
  

Conclusively, our method of order 8 can effectively 
handle stiff problems whose stiffness ratios are very large 
and for which exponential fitting are appropriate. 
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