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Data series generated by complex systems exhibit fluctuations on a wide range of time scales, which 
often follow a scaling relation over several orders of magnitude. Such scaling laws allow for a 
characterization of the data and the generating complex system by fractal scaling exponents, which can 
serve as characteristic fingerprints of the systems in comparisons with other systems and models. In 
this article was developed a fractal characterization of the data series generated by the closed loop 
supply chain that supports the availability of spare parts in Telecom industry since this complex 
system displays fluctuations in its processes caused by endogenous and exogenous variables that 
create a difficulty for matching the recovery process with the demand process. 
 
Key words: Spare parts, closed loop supply chain, complex systems, fluctuations, data series, fractals. 

 
 
INTRODUCTION 
 
Hence the telecommunications service provider (carrier) 
has powerful backbone networks to carry up terabytes of 
traffic data with up to 99.999% reliability, it is necessary 
for the “carrier” to eliminate or reduce the impact of an 
outage in the network due to: congestive degradation, 
unanticipated peaks above the capacity of the network, 
software quality, network design, hardware fault, etc. 
Pushed by market demands for efficient services, 
“carrier” is using telecom equipment manufacturers 
(TEM) after-sales services, to minimize operational and 
capital expenditures, as well as the impact of an outage 
in their network (Cohen et al., 2006). The maintenance 
service that concerns in this article is related with spare 
parts of repairable circuit packs. Carriers and TEM 
established an advance and exchange (AE) spare part 
service scope through an agreement (Hartley, 2005), 
which is designed to give support to critical network 
elements that put on risk the availability of the network. 
The AE service is triggered when a critical network 
element fails, then TEM must send to the “carrier” a good 
circuit pack from its stock under a determined “service 
level agreement”; once received, the “carrier” must return 
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the faulty unit back to TEM's warehouse, so this one can 
be repaired and returned back to the pool of good stock 
(circles 1, 2, 3 and 4 in Figure 1). The defective collect 
process plus the repair process is called the recovery 
process. Most research on supply chain fluctuations has 
focused on the amplification of upstream order variability, 
namely the “bullwhip effect" (Lee et al., 1997). The study 
of supply chain from the point of view of complex systems 
theory has started only recently (Helbing, 2008). 
Concepts from statistical physics and non-linear 
dynamics have recently been used for the investigation of 
supply (Radons and Neugebauer, 2004). In Helding 
(2003) it was generalized concepts from traffic flow to 
describe instabilities of supply chains (called stop-and-go 
traffic (Helding, 2003)). This work remarks how small 
changes in the supply network topology can have 
enormous impact on the dynamics and stability of supply 
chains. In order to stabilize the supply chain, some 
strategies are mention in Radons and Neugebauer 
(2004). 

By simulating a supply chain model, in Larsen et al. 
(1999) it was showed a wide range of non-linear dynamic 
phenomena that produce an exceedingly complex 
behavior in the production-distribution chain model. In 
Makui and Madadi (2007) it was proposed to measure 
the bullwhip effect by  using  the  Lyanupov  exponent.  In 



 

 
 
 
 

 
 
Figure 1. Closed loop supply chain of repairable items. 

 
 
 
Hwarng and Xie (2008) it was used by chaos theory 
through the Lyanupov exponent across all levels of a 
specific supply chain, showing that chaotic behaviors in 
supply chain systems can be generated by deterministic 
exogenous and endogenous factors, and discovering the 
phenomenon “chaos-amplification": the inventory 
becomes more chaotic at the upper levels of the supply 
chain. This article analyzes the data series of the 
amplification of fluctuations in the queue of defective 
circuit packs waiting to be recovered by applying the 
fractal characterization that is, we calculated the scaling 
exponents of the fluctuations. 
 
 
Fractals 
 
The characterization and understanding of complex 
systems is a difficult task, since they cannot be split into 
simpler subsystems without tampering the dynamical 
properties. One approach in studying such systems is the 
recording of long time series of several selected variables 
(observables), which reflect the state of the system in a 
dimensionally reduced representation. Complex systems 
are characterized by periodic components that extend 
over a wide spectrum, and fluctuations on many time 
scales as well as broad distributions of the values are 
found. Often no specific lower frequency limit - or, 
equivalently, upper characteristic time scale - can be 
observed. In these cases, the dynamics can be 
characterized by scaling laws (that is, power-laws with 
scaling exponents) which are valid over a wide (possibly 
even unlimited) range of time scales or frequencies; at 
least over orders of magnitude. Such dynamics are 
usually denoted as fractal, that is, they are  characterized 
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by scaling exponents. Fractals can be seen as objects or 
phenomena under an invariant structure in different 
scales. Fractals are irregular shapes, in either 
mathematics or the real world, wherein each small part is 
very much like a reduced-size image of the whole 
(Mandelbrot, 2002). To identify fractals there are two 
central points: they should be objects with non-integer 
dimension, such as Hausdorff dimension, or they should 
be approximately (or statistically) self-affine (Mumford et 
al., 2002). 

Let us assume that we have a function, �(�), of one 
variable only. Here � (usually time) is the horizontal 
variable, while � is the vertical one. Self-affinity is defined 
through statistical invariance under the transformation: 
 
� ⟶ ��               (1) 
 
� → �	�              (2) 
 
Where  
 is called the Hurst exponent. An alternative way 
of expressing this invariance is by the standard definition 
of self-affine that says that a process of continuous 
time  � = ��(�), � > 0� isself-affine (Embrechts and 
Maejima, 2002; Zhou and Taqqu, 2006) if: 
 
�(��) ≜ �	�(�)                          (3) 
 
Where the scaling exponent 
 measures the correlation 
persistence of data and ≜ denotes quality in distribution. 
 
One of the most useful mathematical models for self-
affine processes has been the fractional Brownian motion 
(fBm) which is an extension of the central concept of 
Brownian motion (Mandelbrot and Van Ness, 1968; 
Embrechts and Maejima, 2002). Self-affine processes 
such as fBm are currently used to model fractal 
phenomena of different nature. Let (Ω, �, �) be a 
complete probability space. The fBm �	(�) is a Gaussian 
process with mean 0, stationary self-affine increments 
(fractional Gaussian noise (fGn)), and 
variance (�	 (�)�) = ��	, that can be characterized by the 
scaling exponent 
 ∈ (0,1). The special value 
 = 1 2⁄  
gives the familiar Brownian motion, then: 
 
For 0 < 
 < 0.5, the process is said to have 
antipersistent correlation. 
For 0.5 < 
 < 1, the process has persistence correlation 
and infinite variance. Because of this property, the time 
series is said to be long-range dependent. 
For 
 = 0.5, the time series is said to be memoryless or 
short-range dependence. 
 
In order to observe fractal scaling behavior in data series, 
several tools have been developed. In this article we use 
two different methods to estimate the scaling 
exponent  
: the rescale range (R/S) analysis method 
and the visibility graph  algorithm.  These  methods  allow 
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the calculation of the scaling exponent 
 (Lacasa et al., 
2009; Gao et al., 2007; Beran, 1994; Taqqu et al., 1995). 
Once we determined the scaling exponent 
, we map the 
data series into graphs; in so doing, methods of complex 
networks analysis are applied to have an insight into the 
emergence of fluctuation in the queues of the recovery 
process. 
 
 

R/S analysis 
 
The R/S analysis refers to a statistical technique to 
estimate the scaling exponent 
 (Mandelbrot, 2002). For 
a given set of observations ��� , � = 1,2, … , !� with sample 
mean �" (!) and sample variance #�(!) the $/# statistic is 
given by: 
 

     (4) 
 
Where, 
 

&� = ∑ (�) − �+(!),�
)-.              (5) 

 
Then $(!) #(!)⁄  characterizes the range of the 
process &�. 
 
One expects that the square of this extend scales with 
! as !�	. We have: 
 

/ 01(2)
3(2)4 ~!	as ! → ∞                         (6) 

 
Thus the value of the scaling exponent 
 can be obtained 
by running a simple linear regression over a sample of 
increasing time horizons: 
 

log 9/ 01(2)
3(2)4: = log(;) + 
 log(!)            (7) 

 
Where log(;) is a constant that determines the point at 
which the line of Equation 7 crosses the 
axis log(/($(!) #(!)⁄ ,). 
 
 

Visibility graph analysis 
 
The visibility graph algorithm is a new method to estimate 
the scaling exponent 
 by mapping a fBm into a scale-
free network according to the following criterion (Lacasa 
et al., 2009; Lacasa, 2008): 
 
Two arbitrary data (�=; ?=) and (�@; �@) in the data series 
have visibility, and consequently become two connected 
nodes in the associated graph, if any other data (�A ; ?A) 
such that �= < �A < �@ fulfills: 
 

 ?A < ?= + (?@ − ?=) BCDBE
BFDBE

             (8) 

 
 
 
 
In Lacasa et al. (2009) it was showed that the degree 
distribution of graphs derived from generic fBm follows a 
power-law �(�)~�DG where � stands for the degree of a 
given node. A linear relation between the scaling 
exponent H of the power-law degree distribution in the 
visibility graph and the scaling exponent 
 of the 
associated fBm series exists through: 
 
H(
) = 3 − 2
              (9) 
 
And in order to estimate the scaling exponent H we 
plotted the logarithm of the vertex degree � versus the 
logarithm of the number of vertices of degree �: K�. The 
resulting curve should approximate a straight line and the 
points satisfy the equation (Clauset et al., 2009): 
 
log(K�) = L − H log(�)           (10) 
 
The range 1 < H < 2 is produced by a “partial duplication 
model” which is motivated on the duplication of 
information in the genome in biological networks (Chung 
et al., 2003). 
 
 

SPARE PART SERVICE PROCESS 
 

In this article we analyzed an advance and exchange 
(AE) spare part service process which happens between 
three stakeholders: the TEM, the “carrier” and the “repair 
vendor” (Figure 1). The AE service is triggered when a 
critical element of the telecom network from the “carrier” 
failed. At time t1, a good unit is delivered [that is, delivery 
process (DP(t))] at “carrier” site. At time�� the “carrier” 
returns the defective unit to the TEM [that is, defective 
collect process (DCP(t))], 
 
Where, �� ≥ �..  
 
At time �N the defective unit arrived at the “repair 
vendorsite” [that is, inbound repair process (IRP(t))], 
where �N ≥ ��. Finally at time �O, once repaired, the unit 
out bounds the repair process [ORP(t)] and returns to the 
pool of good units, 
 
Where, �O ≥ �N. 
 
The dynamics of items that flow in the closed loop supply 
chain described earlier can be visualized by cumulative 
plots as shown in Figure 2. The vertical difference 
between two curves represents the queue P(�)of material 
pending to be processed and the horizontal separation 
between the curves represents the lead time Q each item 
experiences between consecutive echelons. Within this 
system a conservation principle applies: what comes in 
must go out. In general, the queues can be represented 
as: 
 
PRS(�) = TUVWXR(�) − TUVWXS(�) ≥ 0         (11) 
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Figure 2. Cumulative data of each process in the closed loop supply chain.  

 
 
 

 
 
Figure 3. Data series of: (a) delivery process, (b) defective collect process, (c) inbound repair process, and 
(d) outbound repair process. 

 
 
 

For Y > V, where Y = 1, 2, 3, …  ! − 1 and V = 2, 3, 4, … !, 
and ! is the number of echelons in the closed loop supply 
chain. 
 
Similar with the measure of the bullwhip effect (Cachon et 
al., 2007), here the amplification of fluctuations in the 
queues is calculated as: 
 

 for      (12) 

EMPIRICAL FINDINGS 
 
The data series encompassed one year of failures 
(demand of spare parts) of 4217 units. Unfortunately not 
all defective units were collected and/or repaired at the 
moment we began the analysis. Then, only 3617 units 
completed the entire process, that is, since they were 
demanded until repaired. Figure 3 shows the time series 
of each process of the supply chain, that is (a) delivery 
process, (b) defective collect process, (c)  inbound  repair
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Table 1. Simple statistics of the data series of actual deliveries of the closed loop supply chain. 
 

 DP DCP IRP ORP 

Average 9.9095 8.3341 8.3341 7.7952 
Std. Dev. 7.0877 8.5929 11.468 9.1287 
Variance 50.23 73.83 131.51 83.3338 

 
 
 

 
 
Figure 4. Circuit packs queues in the recovery process.  

 
 
 

 
 
Figure 5. Circuit packs queues assuming different constant lead times. 

 
 
 
process, and (d) outbound repair process. The demand 
of the 3617 units happened during 365 days, the 
defective collect process and the inbound repair process 
took 434 days, and finally the outbound repair process 
took 464 days. Although there is a constant amount of 
units processed in each echelon, the number of days of 
each process is required, increased going upstream in 
the supply chain. Table 1 shows simple statistics of the 
data series. It  is  notorious  to  see  in  this  statistics  the 

increment in fluctuations between DCP and DP, and 
between IRP and DCP which confirms the presence of 
the bullwhip effect. By applying Equation 11 in last four 
data series, Figure 4 plotted the three queues P(�)�[ 
involved in the recovery process. In order to verify the 
impact of lead time in the fluctuations of the queues, we 
also built different queues with constant lead time equals 
to: 1, 7, 14, 30, 60 and 90 days (Figure 5). 

In Table 2 we can  see  simple  statistics  of  the  queue
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Table 2. Simple statistics of the circuit packs queues. 
 

 Average Std. Dev. Variance CV 

DCPqueue 147.70 60.91 3710.57 0.41 

IRPqueue 32.48 19.49 379.94 0.60 

ORPqueue 223.42 105.03 11032.17 0.47 

L=1queue 9.90 7.08 50.23 0.71 

L=7queue 58.65 20.61 425.14 0.35 

L=14queue 124.72 37.12 1378.40 0.29 

L=30queue 266.90 81.89 6707.14 0.30 

L=60queue 504.49 178.05 31704.03 0.35 

L=90queue 710.62 273.52 74817.45 0.38 

 
 
 

Table 3. The scaling exponent
 calculated by queue. 
 

 H (R/S) H (Vis. Graph A.) 

DCPqueue 1.00 0.85 
IRPqueue 0.89 0.84 
ORPqueue 0.95 0.96 
L=1queue 0.74 0.78 
L=7queue 0.81 0.81 
L=14queue 0.89 0.88 
L=30queue 0.94 0.90 
L=60queue 0.89 0.96 
L=90queue 0.90 0.91 

 
 
 

Table 4. The scaling exponent  H of the queues of the recovery process. 
 

 DC Queue IR Queue OR Queue 

! 433 431 458 

Edges 1795 1183 2220 

Average degree 8.29 5.48 9.69 

Isolated nodes 27 31 33 

Density 0.0191 0.0127 0.0212 

Average clustering coef. (from data) 0.4875 0.5484 0.5261 

Average clustering coef. (random graph) 0.0202 0.0138 0.0202 

Diameter 10 10 12 

Average shortest path (from data) 4.3325 4.0373 4.9235 

Average shortest path (random graph) 3.1567 3.8783 2.9662 

H 1.2854 1.3069 1.0703 
 
 
 

data series. The coefficient of variation (CV) shows the 
lowest dispersion in the queue when Q = 1, but it 
increased rapidly with greater lead times. 
 
 
FRACTAL RESULTS 
 
Table 3 shows the estimated values of the scaling 
exponent 
.  Both   methods:   R/S  and   “visibility  graph 

algorithm” are consistent due to they yielded values with 
the scaling exponent higher than 1/2. Therefore, the data 
series analyzed shows persistence correlation that is, 
long-range dependence. Also we mapped each data 
series into undirected networks by applying the visibility 
graph algorithm, and we characterize by applying the 
Network Workbench tool software (NWB Team, 2006) 
(Tables 4 and 5). The power-law property of these 
networks was confirmed also by the value  of  the  scaling
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Table 5. The scaling exponent H of lead times. 
 

 L= 1 L= 7 L= 14 L= 30 L= 60 L= 90 

! 365 370 377 393 423 453 

Edges 838 1265 1442 2026 2390 2467 

Average degree 4.59 6.83 7.64 10.31 11.30 10.89 

Isolated nodes 40 26 29 25 26 26 

Density 0.0126 0.0185 0.0203 0.0263 0.0267 0.0241 

Average clustering coef. (from data) 0.5695 0.4675 0.4898 0.4742 0.4258 0.4518 

Average clustering coef. (random graph) 0.0177 0.0219 0.0238 0.0266 0.0253 0.0227 

Diameter 7 9 10 19 9 9 

Average shortest path (from data) 3.7439 4.0429 3.7606 4.7307 4.0064 2.9688 

Average shortest path (random graph) 4.1832 3.3913 3.2262 2.8181 2.7629 2.8300 

H 1.4251 1.3627 1.2309 1.1883 1.0673 1.1720 

 
 
 
exponent  H shown in Tables 4 and 5. As the value of the 
scaling exponent H is always in the range 1 < H < 2, then 
the Partial Duplication model describes how the network 
emerged. 

 
 
CONCLUSIONS 

 
In this article, we focus our attention to analyze the 
fluctuations of defective circuit packs pending to be 
collected and repaired, that is, in the recovery process. 
Simple statistics in the data series showed the presence 
of the “bullwhip effect” between two echelons of the 
closed loop supply chain. Later, by analyzing the 
variability in the queues we found that the shorter of lead 
time, the lower fluctuation. In the data we analyzed, the 
“defective collect queue” as well as the “outbound repair 
queue”, both experience greater lead times than the 
“inbound repair queue”, and as a consequence, more 
fluctuations. In the fractal characterization we observed 
that the shorter of lead time, the lower persistence or 
long-range dependence that experiences the queues that 
is, an increase in the queue is likely to be followed by 
another increase, while decreases are likely to be 
followed by decreases. In all cases the data series show 
persistence due they have a scaling exponent between 
0.5 < 
 < 1. With the “visibility graph algorithm” we 
mapped the three data series of the queues into graphs. 
All graphs show the presence of the power-law 
property �(�)~�DG� with a scaling exponent 1 < H < 2. 
According with the value of the scaling exponent  H found 
in this article, the graphs emerged through the “partial 
duplication model”. Unfortunately, the collected data are 
too small compared with the internet (Albert et al., 2000), 
and it would be recommended to wait for more years of 
data to characterize with more accurate the values of the 
scaling exponents H of the power-laws. In conclusion, the 
fluctuations in the queues of the recovery process 
increases when the scaling exponent 
 is closer to 1  and 

the scaling exponent  H is also closer to 1 as a result of 
an increment of the lead time. So lead time variable 
represents a key factor to mitigate the fluctuations in the 
closed loop supply chain analyzed in this article. If one 
finds that a complex system is characterized by fractal 
dynamics with particular scaling exponents, this finding 
will help in obtaining predictions on the future behavior of 
the system and on its reaction to external perturbations or 
changes in the boundary conditions. In the literature, the 
number of outstanding circuit packs in the recovery 
process are normally modeled by an\ ] ∞⁄⁄  queueing 
system (\ stands for Poisson arrivals, ] for a general 
lead time distribution, and ∞ for an unlimited number of 
servers, (Beran, 1994)). 

According with Palm's theorem (Palm, 1938), the total 
ocupacy in the \ ] ∞⁄⁄  system is Poisson distributed with 
mean �/(Q), (where � represents the intensity of circuit 
packs failures). However, the present analysis shows that 
the queueing system resulted to be heavy-tailed. In 
general, many social, technological and economic 
phenomena have being approximated by Poisson 
processes. In contrast, there are evidences that many 
phenomena is Non-Poisson distributed (Smethurst and 
Williams, 2005; Monte et al., 2002; Barabási, 2005). 
Finally, we can conclude that the development of a spare 
parts mathematical model should include fractional 
Brownian motion in the supply chain processes. 
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