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Transcendental models are often solved by using a different approach, which can be a derivative free, 
direct optimisation or iterative linearization method. All these approaches require guess values for the 
unknown parameters to start the iteration procedure. However, if the transcendental model involves 
several parameters, some of these methods become very cumbersome and computationally expensive. 
A new method for computing parameter estimates which are then used as initial values for the unknown 
model parameters to start the iteration process was proposed. Confidence intervals for the estimated 
parameters were constructed using the bootstrap method. We generated two randomised datasets that 
simulated the decay and growth processes. A three parameterized single exponential model 

  )exp()( xxf  was identified using the simulated datasets in each case. The absolute 

percentage errors were used as a measure of comparison between the proposed method and the 
current Levenberg-Marquardt (L-M) method. Tables and figures were used to present results from both 
methods. The proposed method appeared to produce better results than the current L-M method. The 
superiority of the proposed method over the current methods is that it does not require initial guess 
values and it guarantees convergences. Thus the proposed method could be adopted to solve real life 
problems. 
 
Key words: Least-squares, parameter identification, transcendental models, confidence intervals, bootstrap 
method, initial guess values, Gaussian white noise, probability model. 

 
 
INTRODUCTION 
 
Many real physical problems can be modelled and 
analyzed using transcendental mathematical models. A 
problem of fundamental importance to the chemical 
engineer is the analysis of system or plant output data for 
the purpose of process modelling. Given output data, it 
may be desired to construct an adequate mathematical 
model of the system, often in the form of estimating 
parameters in the process model. For economic decision 
theory, the economic interactions may be described with 
models that take into account the geometry of the 
process. Economic forecasting will usually involve some 
nonlinearities for resource utilization (Fishburn, 1964). 

Parameter   estimation   is   an   integral  part  of  model  
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identification and is a task which must be considered 
when modelling many physical situations or processes. A 
notion closely linked to parameter estimation is the 
concept of the identifiability of model parameters. There 
are usually two ways to consider when identifying model 
parameters: Structural or priori and numerical or practical 
identification (Nadja et al., 2008). Structural determines 
whether the parameters can be identified from a specified 
input-output experiment when reliable data are available. 
Numerical concerns the question of identifiability in the 
presence of real, noisy data and is essentially a problem 
of parameter estimation accuracy (Nadja et al., 2008). A 
number of methods have been developed for solving 
nonlinear least squares problems such as Gauss–
Newton method, Levenberg–Marquardt (L-M) method, 
Powell’s Dog Leg method, a hybrid method for L–M and 
Quasi–Newton, a secant version of the L–M method, and 
a secant version of the Dog Leg method (Maden et al., 
2004). The  Gauss- Newton method is   the   basis of  the  



 
 
 
 
very efficient methods. It is based on implemented first 
derivatives of the components of the vector function. In 
special cases it can give quadratic convergence as the 
Newton-method does for general optimization (Frandsen 
et al., 2004). Levenberg (1944) and later Marquardt 
(1963) suggested using a damped Gauss-Newton 
method (Maden et al., 2004). 

Least squares (LS) problems are optimization problems 
in which the objective (error) function may be expressed 
as a sum of squares. All methods for non-linear 
optimization are iterative, requiring a starting point (initial 
value). This value is seldom a guess value which may not 
guarantee convergence, may lead to longer computation 
time if the guess value is far away from the optimal value 
and providing such a value needs high expertise. All 
these are shortcomings of the current methods in use. It 
is known that some form of trial and error is required to 
find initial values which can lead to rapid convergence of 
the current algorithms in use to the least-squares values 
(Marshall, 1948). Our aim is to demonstrate a method of 
finding the initial values to a broad range of 
transcendental problems, the problems which could be 
formulated in terms of ordinary differential equations that 
are linear with respect to unknown parameters. We 
consider two particular examples (the decay and growth 
models) of this formulation and solutions of the problems. 
Confidence intervals of the estimated parameters were 
computed using the percentile bootstrap technique, 
(Efron, 1987), a program in mathematica software was 
written to effect the percentile bootstrap method. A 
comparison of parameter estimates between our 
proposed method and the more robust Levenberg–
Marquardt method which is implemented in mathematica 
was done (Tables 2 and 3 reveal the growth and decay 
model parameters and percentage absolute errors). For 
these particular examples considered, our method proved 
to be superior to the current L-M method in some cases 
and at some point the L-M method was superior in 
estimation of the known model parameters. We noticed 
that the variation in superiority of the two methods 
depended on the dataset being used. 
 
 
PROBLEM STATEMENT 
 

Consider a set of data points, ),(),...,,( 11 mm yxyx and a 

transcendental model in parameters, ),( xfy   that in 

addition to the variable x  it also depends on n  

parameters, ),...,( 1 n   with nm  . It is desired to 

find   of parameters such that the curve fits the given 

data in the least squares sense, which is the sum of 
squares: 
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Equation (1) is minimized, where the residuals iu  are 

given by; 
 

)ˆ,( iii xfyu  for mi ,...,2,1
.
           (2) 

 
In this paper, we focus on the method proposed to 

estimate the unknown parameters ),...,( 1 n   in the 

least squares sense and also construct their confidence 
bounds. The estimates can be used as initial guess 
values for the unknown parameters to start the iteration 
process for any of the methods in current use. 
 
 
THEORETICAL BASIS OF THE METHOD 
 
The theoretical understanding of the method is contained in two 
theorems (Marshall, 1948) for the Weierstrass theorem of 
continuous function approximation and for the linearly independent 
functions (Alvin and Bruce, 2008). 
We consider a three parameterized transcendental model of the 
form, 
 

   xexf )(                 (3) 

 

Where  ,   and   are the unknown parameters to be 

estimated. 
 

xexf  )(                   (4) 

 
rewriting Equation (4) we obtain 
 

xexf  )(  With                   (5) 

 

)()( xfexf x   

               (6) 
 
Equation (6) can be rearranged as 
 

.0)()(  xfxf 
 

               (7) 

 
Integrating Equation (7) we obtain 
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0)()()()(  afafxfxf                (9) 

 

Let   )()( afaf  in Equation (9); on rewriting it we obtain 

 

0)()(   xfxf               (10) 

 
Integrating Equation (10), 
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we obtain, 
 

)()()( afxxIxf   , with  dfxI

x

a

 )()( (12)  

  
Integration is performed using numerical methods. 
Equation (12) can be viewed as: 
 

CXXY  21                (13) 

 

Where xXxIXxfY  21 ),(),(  and )(afC  ; 

parameters  ,  and C  are estimated using standard 

regression techniques. However,   and C  are here considered 

as nuisance parameters and subsequently ignored in the process. 

On estimating   from Equation (13), we can now reformulate 

Equation (3) as a linear regression equation. 
 

13)( CXxf   for 
xeX 3 and 1C            (14) 

 
Equation (14) is as well estimated as Equation (13) by standard 
least squares methods. From Equations (13 and 14) we are able to 
estimate all the parameters in the original transcendental model, 
Equation (3). 

Hence the transcendental parameters  , and   have been 

estimated and can be used as starting values for the iteration 
process. However, confidence intervals of these parameters need 
to be constructed. 

 
 
BOOTSTRAP METHOD 

 
Bootstrap is a re-sampling technique widely used to compute 
accurate statistical inferences. The technique is computer based 
and intended to assign measures of accuracy to statistical 
estimates. It allows us to compute almost all statistics without 
knowledge of their parental distributions. It is on this basis that the 
bootstrap method is preferred for our work. The bootstrap method 
substitutes the more mathematically involving Monte Carlo 
techniques with an increase of several orders of magnitude in the 
computing needed for a statistical analysis. 

Bootstrapping is performed on the linear regression models. The 
regression model is bootstrapped by applying two methods 
depending on the explanatory variables. If the explanatory variables 
are fixed as in the designed experiment, then the bootstrap method 
must retain that structure. For that case each bootstrap sample 
must have the same explanatory variables. On the other hand, 
regression models built from survey data typically have explanatory 
variables that are as random as the explained variable, and 
bootstrap samples should also possess this additional variation 
(Robert, 1989). In our proposed method we consider the 
randomised case of the explanatory variables and compare the 
confidence intervals for both the normal theory and the bootstrap 
techniques. It was prudent to consider the examples from a 
randomised set of data as it is more practically used in real life and 
more realistic; typical of survey studies. 

The statistical inference of our model parameters is considered at 
the linearised stage of the proposed method. The linearised 
equations are estimated as regression models by the method of 
ordinary least squares (OLS). 

 
 
 
 
Percentile bootstrap confidence intervals 
 
Mathematical statisticians never talk of reliable confidence intervals, 
but only a reliable confidence interval method, that is one that gives 
intervals whose actual coverage probability is close to the normal 
value (DiCiccio and Efron, 1996). 

With an assumption that the explanatory variables are stochastic, 
Equations (13 and 14) are estimated via OLS, and the residuals are 

stored. Then, N different “dummy-data” 
*Y  are generated in a 

manner coherent with the estimated model (Equation 15). 
 

UCXXY  ˆˆˆ *

2

*

1

*               (15) 

 

Where  ˆ,ˆ  and Ĉ  are OLS estimates and the u dummy 

disturbance terms are drawn randomly with replacement from the 

estimated residuals ̂ . For each of the N generated series, a 

regression coefficient ̂  is calculated, and the th  percentile 

of the resulting distribution is used as the 1  percent critical 

value for this procedure. Then the percentile intervals of the 
respective estimates can be represented as: 
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These are the approximate 21  percentile intervals for the 
model parameters as presented in Equation (3). 

Equation (15) has a nuisance parameter , but this work ignores 

the accuracy of the confidence intervals in their coverage aspect in 
the presence of nuisance parameters. However, we must state that 
this is rather a complicated case and ignoring the presence of the 
nuisance parameter is only at the programming stage when we 
consider only the parameter of interest for confidence interval 
estimation. Efron (1987) discusses confidence intervals in the 
presence of nuisance parameters. Robert (1989) comprehensively 
discusses methods of bootstrapping random and fixed explanatory 
variables. In the present study we only put our focus on the model 
with variable (stochastic) explanatory variables, for both the decay 
and the growth models. 
 
 
PRACTICAL IMPLEMENTATION 
 

The proposed method was implemented on two known exponential 
models, the growth and decay models. Using Mathematica 
software, two datasets were then generated to simulate both 
models. A randomly distributed noise (Gaussian white noise) of 
mean 0 and variance 5 was added to the dataset of the growth 
process while noise of mean 0 and variance 0.05 was added to the 
decay process to simulate a real world survey dataset which can be 
modelled by a probability model in each case, since Gaussian white 
noise is a good approximation of many real-world situations and 
generates mathematically tractable models (Athanasios, 1991). We 
then estimated the known parameters of Equations (17 and 17a) 
using the simulated dataset from both the proposed method and the 
already existing, but more robust Levenberg-Marquardt method. 
This was done to compare the results (estimates) from both the 
proposed and the L-M methods to establish which of the two gives 
better results or estimates close to the exact (known) parameters. 
We showed examples of the problems for the simple cases of the 
growth model, Equation (17) and the decay model, Equation (17a). 
. 

15)1.1exp(2.0)(  xxf                            (17) 
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Table 1. Exact and approximate central 95% confidence intervals for the estimated model parameters n =1000. 
 

Model for ̂  for ̂  for ̂  

Exact (normal theory) 
[0.205065; 0.205351] 

̂ =0.205208 

[1.09558; 1.09558] 

̂ =1.09558 

[14.90234; 14.96398] 

̂ =14.93316 

Percentile bootstrap 
[0.0675918; 0.233158] 

̂ =0.123389 

[1.08202; 1.13606] 

̂ =1.12028 

[15.1519; 19.6884] 

̂ =17.4967 

 
 
 

15)1.1exp(2.0)(  xxf
           (17a)

 

 
Equations (17) and (17a) are estimated according to the proposed 
method as the systematic procedure from Equation (3) through 
Equation (14) is followed. Equations (18) and (18a) shows the 
estimated models (growth and decay) respectively, using our 
proposed method: 

 

4341.16)11473.1exp(177825.0)(  xxf
 
           (18) 

 

0108.15)23258.2exp(225935.0)(  xxf
         (18a)

 

 
The confidence intervals of the estimated parameters are computed 
using the bootstrap method discussed in “Percentile bootstrap 
confidence intervals”. 

 
 
RESULTS AND DISCUSSION 
 
We presented results of the estimated model parameters 
and the corresponding confidence intervals derived by 
the non parametric bootstrap percentile method and 
normal theory assumptions. 

Table 1 shows the parameter estimates and their 
respective confidence intervals for the growth model 
(Equation 17). Only the growth model was presented 
since the same method was followed to compute results 
for the decay model (Equation 17a). The estimated 
parameters were computed using the proposed method 
under normal theory assumptions (OLS) and non 
parametric bootstrap techniques in each case. 
Confidence intervals of the individual estimates were 
computed for each method (normal theory and bootstrap) 
(Table 1). Bootstrapping was done 1000 times implying 
that the model was estimated on n=1000 data points. 
 
 
Comparison of proposed and Levenberg-Marquardt 
methods 
 
We compared the parameter estimates computed from 
our proposed method and those computed using the 
existing Levenberg-Marquardt method with the known 
(exact) model parameters. The Levenberg-Marquardt 
method is a standard technique used to solve nonlinear 
least squares problems. Least squares problems arise 

when fitting a parameterised function to a set of 
measured data points by minimising the sum of the 
squares of the errors between the data points and the 
function. Nonlinear least squares problems arise when 
the function is not linear in parameters. Non linear least 
squares methods involve an iterative improvement of the 
parameter values in order to reduce the sum of the 
squares of the errors between the function and the 
measured data points. The Levenberg-Marquardt curve 
fitting method is actually a combination of two 
minimisation methods: the gradient descent and the 
Gauss-Newton method (Henri, 2011). The “exact” 
parameter values PExact, the estimated parameter values 
using the proposed method Pprop-method, the estimated 
parameters values using the Levenberg-Marquardt (L-M) 
method PL-M method, the absolute error between the “exact” 
values and estimates by the L-M method PExact - PL-M 

method, and the absolute error between the “exact” values 
and our proposed method PExact-Pprop-method, were all 
shown in Table 2. The percentage absolute errors are in 
parentheses in each case. All computations were done 
using mathematica software. Table 2, shows results of 
the growth model (Equation 17) and fitted curves to 
compare the performance of the two methods in 
estimating the original model is shown (Figure 1). We 
observed that our proposed method outperformed the 
Levenberg-Marquardt method as seen from the absolute 
percentage errors in parentheses (Table 2). We 
compared how each of the methods performed on 
estimating each of the parameters by computing the 
absolute percentage error in parentheses. We preferred 
the Levenberg-Marquardt method for our comparison due 
to its robustness and being a combination of two 
minimisation methods: the gradient descent and the 
Gauss-Newton method. 

From Figure 1, it is almost impossible to distinguish 
between the “exact” curve from the fitted curves of both 
the proposed and Levenberg-Marquardt methods. 
However, we observed that the fitted (green) curve using 
the proposed method appeared to be closer to the “exact” 
(red) curve than the fitted (blue) curve using the L-M 
method. This was justified by the absolute percentage 
errors in parentheses (Table 2). 

Table 3 shows parameter estimates of the decay model 
(Equation 17a). The computational methods were the 
same  as  those  for  the  growth  model  and  the  results 
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Table 2. Parameter values of the proposed and L-M methods and their respective absolute and percentage errors (values in 
parentheses) for the growth model. n=30. 
 

Parameter PExact Pprop-method PL-M method Absolute error (PExact - PL-M method) Absolute error (PExact-Pprop-method) 

  0.2 0.177825 0.156527 0.0434729 (21.7) 0.0221752 (11.1) 

  1.1 1.11473 1.13597 0.0359724 (3.3) 0.0147301 (1.3) 

  15 16.4341 17.0395 2.03955 (13.6) 1.43406 (9.7) 
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Figure 1. Comparison of the fitted curves between the proposed (green) and L-M (blue) methods with 
the “exact” (red) curve. 

 
 
 

Table 3. Parameter values of the proposed and L-M methods and their respective absolute and percentage errors (values in 
parentheses) for the decay model (n=30). 
 

Parameter PExact Pprop-method PL-M method Absolute error (PExact - PL-M method) Absolute error (PExact-Pprop-method) 

  0.2 0.22594 0.226496 0.026496 (13.2) 0.025935 (13.0) 

  -1.1 -2.23258 -2.60767 1.50767 (137.1) 1.13258 (102.1) 

  15 15.0108 15.0127 0.0126603 (0.08) 0.0108018 (0.07) 

 
 
 

were compared with those of the Levenberg-Marquardt 
method still the same way it was done for the growth 
model (Table 2). The figures in parentheses are the 
absolute percentage errors due to the proposed and 
Levenberg-Marquardt methods on estimating the “exact” 
parameter, PExact. The proposed method appeared to 
produce better estimates than the existing Levenberg-
Marquardt method. The superiority of the proposed 
method over the L-M method was supported by the 
magnitude of the absolute percentage errors between the 
two methods on estimating the “exact” individual 
parameters (Table 3 show values in parentheses). 

The decay graph model (Figure 2) was constructed to 
compare the fitted curves from both methods with the 
“exact” curve. It was assumed that the “exact” (red) curve 

was the best fit to the randomised dataset of the 
simulated decay process while the green and blue curves 
represented fitted curves using the proposed and the 
existing Levenberg-Marquardt methods respectively. We 
observed that the green curve was closer to the red 
“exact” curve than the blue curve throughout the entire 
domain of approximation. This clearly showed that the 
proposed method was more superior to the existing L-M 
method for this particular problem. 
 
 
Conclusion 
 
When the parameter values are estimated their 
confidence  intervals  can  be  computed  using  the  non- 
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Figure 2. Comparison of the fitted curves between the proposed (green) and L-M (blue) methods 
with the “exact” (red) curve. 

 
 
 

parametric bootstrap percentile method (Table 1). The 
bootstrap method was preferred, because it does not 
require asymptotic assumptions of the underlying data 
set. Since these confidence intervals are not based on 
asymptotic theory, they may provide a good guide in any 
actual case. 

We demonstrated that the proposed method performed 
better than the current Levenberg-Marquardt method for 
this particular model. Firstly, the superiority of the 
proposed method was justified by the relatively smaller 
magnitudes of the absolute percentage errors (Tables 2 
and 3 reveals the growth and decay models, respectively; 
values in parentheses). Secondly, looking at the fitted 
curves for both processes (Figures 1 and 2), it was 
observed that the green curve, fitted using our proposed 
method was closer to the “exact” red curve than the blue 
curve, fitted using the existing Levenberg-Marquardt 
method. This implied that the proposed method 
computed estimates that were more less the same as the 
known “exact” model values (Equations 17 and 17a) than 
the existing Levenberg-Marquardt method for these 
particular problems. 

The method appeared to work well for the single 
exponential model studied in this paper, however more 
research is required that may probably be extended to 
more complicated models which can be reformulated in 
terms of ordinary differential equations that are linear with 
respect to the unknown parameters. The proposed 
method has the advantage over the current methods of 
not requiring initial guess values. The current methods 
require initial guess values for the parameters to start the 
iteration process. These initial values may not guarantee 
convergence, may lead to long computation time if the 
provided guess is far from the optimal value and 
providing a “good” guess requires high experience.  

Thus, we believe that the technique proposed in this 
paper can be adopted and will often be useful in real 
practice. 
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