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Photon buildup factors for soft tissue, water, and dosimetric materials have been computed in the 
energy range of 0.2 to 2 MeV using geometric progression (GP) fitting approximation. The results for 
soft tissue and water have been compared with the values obtained through Monte Carlo code 
MCNP4C. Data obtained from GP fitting method quite well obey a semi empirical relation which is a 
function of penetration depth, Compton scattering and energy absorption cross section. With the help 
of this semi-empirical approximation, buildup factors for gamma and X-rays in soft tissue, water, and 
dosimetric materials consisting of elements Hydrogen (H), Carbon (C), Nitrogen (N) and Oxygen (O), 
can be easily estimated in the energy range of 0.2 to 2 MeV up to penetration depths of 10 mfp.     
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INTRODUCTION  
 
Photon buildup arises from the collided part of the 
incident beam and brings up an undesired situation faced 
by radiation physicists, oncologists, and engineers while 
designing the shield or estimating the absorbed dose. In 
the medical and biological context, gamma ray buildup 
factor is of importance in estimating distribution of photon 
flux and in calculation of radiation dose received by the 
biological molecules, in addition to the importance of 
knowledge on other photon interaction parameters such 
as mass attenuation coefficients and effective atomic 
numbers in biological materials (Chilton et al., 1984; 
Kurudirek and Ozdemir, 2011). The knowledge about 
how radiation interacts with matter, especially with the 
human body is of importance because when photons 
enter the medium (body), they degrade their energy and 
buildup in the medium, giving rise to secondary radiation 
which  can  be  estimated  by  the  ‘buildup factor’ (Sidhu 
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et al., 2000a). Up till now, studies regarding photon 
buildup factors in different materials have been widely 
made using the well-known methods that is, geometric 
progression (GP) fitting method, invariant embedding (IE) 
method, generalized feed-forward neural network 
(GFFNN), and Monte Carlo N-Particle (MCNP) codes 
(Singh et al., 2008; Manohara et al., 2010; Sidhu et al., 
2000a; Sardari and Baradaran, 2010; Singh et al., 2010; 
Mann et al., 2012; Mann and Sidhu, 2012; Mann et al., 
2012; Sakamoto and Tanaka, 1988; Shimizu, 2002; 
Shimizu et al., 2004; Harima et al., 1986; Kucuk, 2010). 
However, there is almost no study based on applying a 
semi-empirical approach to the data obtained through five 
parameter GP fitting method. This prompted us to focus 
on this study. Recently, Sardari and Baradaran (2010) 
developed a new relationship estimating buildup factor as 
a function of penetration depth, Compton scattering, and 
energy absorption cross sections (Sardari and 
Baradaran, 2010). This new equation estimates buildup 
factor with 5% dethroughtion compared with the existing 
data. In the present study, we applied the semi-empirical 
approach  which  is  developed  by  one  of   the   authors 



 

 
 
 
 
recently (Sardari and Baradaran, 2010) to the energy 
absorption buildup factor data obtained by GP fitting 
method for soft tissue, water, and Hydrogen (H), Carbon 
(C), Nitrogen (N) and Oxygen (O) based dosimetric 
materials namely alanine, gafchromic sensor (GS), 
radiochromic dye film nylon based (RDF:NB), Tissue-
equivalent gas-methane based (TEG:MB), and Tissue-
equivalent gas-propane based (TEG:PB) for the first time. 
Results are presented in tabular as well as in graphical 
forms. The chemical composition data of dosimetric 
materials were taken from ICRU Report 44 (1989). Also, 
the chemical composition data of soft tissue were taken 
from previous studies (Sardari et al., 2009; Wilson, 1946).   

 
 
COMPUTATIONAL WORK 
 
GP fitting method 
 
To calculate the buildup factors, the GP fitting parameters were 
obtained by the method of interpolation from the equivalent atomic 

number ( eqZ ). Computations are illustrated step by step as 

follows: 
 

a) Calculation of the equivalent atomic number,
eqZ , , 

b) Calculation of GP fitting parameters, 
c) Calculation of energy absorption buildup factors. 
 
At the first step, the equivalent atomic number, 

eqZ  for a particular 

material has been calculated by matching the 
ratio,

TotalCompton )/()(  , of that material at a specific energy 

with the corresponding ratio of an element at the same energy. 
Thus, firstly the Compton partial mass attenuation coefficient, 

Compton)(  , and the total mass attenuation coefficients, 

Total)(  , were obtained for the elements of 404Z  and for 

the chosen materials in the energy region 0.015 to 15 MeV, using 
the WinXCom computer program (Gerward et al., 2001a; 2004b) 
[initially developed as XCOM (Berger and Hubbell, 1999)]. For the 

interpolation of eqZ  for which the ratio 

TotalCompton )/()(   lies between two successive ratios of 

elements, the following formula has been employed (Sidhu et al., 
1999b): 
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Where 1Z  and 2Z  are the atomic numbers of elements 

corresponding to the ratios 1R and 2R , respectively, R  is the 

ratio for the material at a specific energy.  
At the second step, to calculate the GP fitting parameters, a 

similar interpolation procedure was adopted as in the case of the 
equivalent atomic number. The GP fitting parameters for elements 
were taken from the ANSI/ANS-6.4.3 (ANSI/ANS, 1991) standard 
reference database which provides the GP fitting parameters for 
elements from beryllium to iron in the energy region 0.015 to 15 
MeV up to 40 mfp.  
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At the final step, these parameters were used to calculate the 
energy absorption buildup factors from the GP fitting formula 
(Harima et al., 1986): 
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Where E  is the incident photon energy, x is the penetration depth 

in mfp, dcba ,,,  and kX  are the GP fitting parameters, and b  

is the value of buildup factor at 1 mfp. The parameter K  represents 
the photon dose multiplication and the change in the shape of the 
spectrum.  
 
 
Semi-empirical approach 
 
The MCNP values of buildup factors for the soft tissue and water 
was taken from previous study for comparison (Sardari and 
Baradaran, 2010). The following semi-empirical relationship was 
used to describe the variations of buildup factor as a function of 
energy absorption cross sections and penetration depth (Sardari 
and Baradaran, 2010): 
 

                                                             (1) 

 
Where ‘a’ and ‘b’ are parameters to be found so that the results of 
Equation 1 fit to the data obtained from GP fitting method. The 
following relationship was defined for ORIGIN software with a given 
set of B and X as input data: 
 

                                                                        (2) 

 
For each set of data at specific photon energies, ORIGIN computed 
the best quantity for ‘a’ and ‘b’ parameters. For detailed 
explanations on the semi-empirical relation used in the present 
study, we may refer to the previous study in which the use of semi 
empirical relation is explained in detail (Sardari and Baradaran, 
2010).  
 
 
RESULTS AND DISCUSSION 
 
The ratio of macroscopic scattering to absorption cross 
sections for materials of interest in dosimetry are given in 
Table 1. These values were further used to fit buildup 
factor data as shown in X-axis of each graph. One should 
note that beyond 2 MeV the ratios are more or less the 
same for the given H, C, N, O based dosimetric 
materials. Table 2 lists the available buildup factor data 
obtained by different methods for water at different 
energies for different penetration depths. Variations of 
photon buildup factors as a function of energy absorption 
cross  section  and  penetration  depth  was  given for the  
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Table 1. Scattering to energy absorption cross section ratios for some dosimetric materials. 
 

Energy (MeV) 
∑s/∑a (Ratio of scattering to energy absorption cross section) 

Alanine GS RDF:NB TEG:MB TEG:PB 

0.2 3.086 3.227 3.272 3.448 3.452 

0.3 2.718 2.718 2.718 2.717 2.717 

0.4 2.232 2.234 2.234 2.232 2.233 

0.5 1.931 1.930 1.930 1.930 1.930 

0.6 1.722 1.723 1.723 1.723 1.723 

0.8 1.455 1.457 1.457 1.455 1.456 

1 1.274 1.274 1.274 1.274 1.274 

2 0.873 0.874 0.874 0.873 0.874 
 
 
 

Table 2. Available buildup factor data obtained by different methods for water at different energies.  
 

Energy (MeV) 
Buildup factor (1 mfp) 

MCNP GP fitting method (ANSI) Jaeger Schaeffer Chilton Shultis Kucuk 

0.2 3.53 3.42   3.42 3.42 3.41 

0.3 2.97 2.85     2.86 

0.4 2.68 2.61     2.58 

0.5 2.61 2.44 2.56 2.52 2.45 2.44 2.44 

0.6 2.41 2.33     2.34 

0.8 2.17 2.17     2.18 

1 2.14 2.08 2.10 2.13 2.08 2.08 2.07 

2 1.71 1.83 1.73 1.83 1.83 1.83 1.81 
        

Energy (MeV) Buildup factor (2 mfp) 

0.2 7.44 8.31   8.22 8.31 8.26 

0.3 6.35 6.30     6.34 

0.4 5.45 5.44     5.49 

0.5 4.95 4.88 5.10 5.14 4.87 4.88 4.86 

0.6 4.60 4.49     4.46 

0.8 3.89 3.96     3.91 

1 3.60 3.62 3.58 3.71 3.62 3.62 3.55 

2 2.30 2.81 2.55 2.77 2.82 2.81 2.82 
        

Energy (MeV) Buildup factor (4 mfp) 

0.2 25.00 27.00   26.40 27.00 27.00 

0.3 20.20 19.30     19.30 

0.4 15.80 15.30     15.30 

0.5 12.50 12.80 13.50 14.30 12.70 12.80 12.90 

0.6 11.30 11.20     11.40 

0.8 8.90 9.00     9.05 

1 7.21 7.68 7.42 7.68 7.66 7.68 7.59 

2 4.75 4.98 4.40 4.88 4.99 4.98 5.06 
        

Energy (MeV) Buildup factor (7 mfp) 

0.2 66.00 88.50   86.20 88.50 88.50 

0.3 52.50 57.80     57.80 

0.4 40.50 41.90     41.90 

0.5 31.00 32.70 35.00 38.80 32.20 32.70 32.60 

0.6 25.20 26.70     27.00 

0.8 18.20 19.80     19.70 

1 14.50 15.80 15.20 16.20 15.70 15.80 15.50 

2 6.36 8.65 7.51 8.46 8.66 8.65 8.73 
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Table 2. Contd. 
 

Energy (MeV) Buildup factor (10 mfp) 

0.2 157.00 208.00   202.00 208.00 208.00 

0.3 107.00 126.00     126.00 

0.4 81.50 85.00     84.90 

0.5 60.60 62.90 68.10 77.60 61.80 62.90 62.70 

0.6 47.90 49.30     49.70 

0.8 32.60 34.20     34.00 

1 23.00 26.10 25.10 27.10 26.00 26.10 25.60 

2 9.15 12.70 10.90 12.40 12.70 12.70 12.40 
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Figure 1. Photon buildup factor versus X (μr.Σs/Σa) variant for water at (a), 0.2, (b), 0.5 and (c) 2 MeV.  
 
 
 

soft tissue and water as well as dosimetric materials in 
Figures 1 to 7. It has been observed from Figures 1 to 7 
that the semi-empirical relationships are consistent with 
the fitted data obtained from GP fitting method. In each 
graph, the best fit coefficients are given through the R-
square values and standard errors. From the values of R

2
 

and standard errors, it can be concluded that the present 
semi-empirical    approximation    could    yield    accurate 

resultsof buildup factor data obtained by GP fitting for the 
given materials namely soft tissue, water, and H, C, N, O 
based dosimetric materials namely GS, RDF:NB, 
TEG:MB, and TEG:PB. It should be mentioned that the 
ANSI/ANS-6.4.3 (1991) standard has been 
administratively withdrawn, but work is still in progress for 
updating this standard (Ryman et al., 2008). The relative 
differences  in  buildup  factors   between the MCNP code 
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Figure 2. Photon buildup factor versus X (μr.Σs/Σa) variant for alanine at (a), 0.2, (b), 0.5 and 
(c), 2 MeV. 
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Figure 3. Photon buildup factor versus X (μr.Σs/Σa) variant for soft tissue at (a), 0.2, (b), 
0.5 and (c), 2 MeV. 
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Figure 4. Photon buildup factor versus X (μr.Σs/Σa) variant for GS at (a), 0.2, (b), 0.5 and (c), 2 MeV. 
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Figure 5. Photon buildup factor versus X (μr.Σs/Σa) variant for RDF:NB at (a), 0.2, (b), 0.5. 



 

5858          Int. J. Phys. Sci. 
 
 
 

    

   
0 5 10 15 20 25 30 35

0

50

100

150

200

250
0 5 10 15 20 25 30 35

0

50

100

150

200

250

 

 

TEG:MB (0.2 MeV)

B
 (

B
u

il
d

u
p

 f
a

c
to

r
)

X (r.s/a)

Equation y = (1 + a*x)^b

Adj. R-Square 0.99998

Value Standard Error

B a 0.12449 0.00104

B b 3.26239 0.01355

 

(a) 

0 5 10 15 20

0

10

20

30

40

50

60

70
0 5 10 15 20

0

10

20

30

40

50

60

70

 

 

TEG:MB (0.5 MeV)

B
 (

B
u

il
d

u
p

 f
a

c
to

r
)

X (r.s/a)

Equation y = (1 + a*x)^b

Adj. R-Square 1

Value Standard Error

B a 0.24028 8.43123E-4

B b 2.41156 0.00418

 

(b) 

0 5 10
0

2

4

6

8

10

12

14
0 5 10

0

2

4

6

8

10

12

14

 

 

TEG:MB (2 MeV)

B
 (

B
u

il
d

u
p

 f
a

c
to

r
)

X (r.s/a)

Equation y = (1 + a*x)^b

Adj. R-Square 1

Value Standard Error

B a 0.68609 0.00235

B b 1.31054 0.00212

 

(c) 

 
 

Figure 6. Photon buildup factor versus X (μr.Σs/Σa) variant for TEG:MB at (a), 0.2, (b), 0.5 and 
(c), 2 MeV. 
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Figure 7. Photon buildup factor versus X (μr.Σs/Σa) variant for TEG:PB at (a), 0.2, (b), 0.5 and 
(c), 2 MeV.and (c), 2 MeV. 
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Figure 8. Relative difference (%) between the buildup factor values for soft 
tissue obtained through MCNP and GP fitting approximation. 

 
 
 
and GP fitting method are shown in Figure 8 for soft 
tissue. It has been observed that except for the 
penetration depths of more than 7 mfp and photon 
energy values more than 1 MeV, there is a good 
agreement between MCNP and GP fitting methods.  

In the present study, a semi-empirical relationship was 
applied to the buildup factor data obtained from GP fitting 
method for the first time. The results are quite satisfactory 
for the soft tissue, water, and dosimetric materials such 
as GS, RDF:NB, TEG:MB, and TEG:PB. It was 
concluded that for lower penetration depths (< 10 mfp) 
and photon energies lower than 2 MeV, the presented 
semi-empirical approximation can be used as a safe tool 
to estimate buildup factors for gamma and X-rays in soft 
tissue, water, and dosimetric materials consisting of H, O, 
N and C.  
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