
International Journal of the Physical Sciences Vol. 6(10), pp. 2338-2347, 18 May, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.424
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

An FPGA realization of simplified turbo decoder
architecture

Shivani Verma1* and Kumar S.2

1
Department of Electronics and Communication Engineering, ASET, Bijwasan, New Delhi, India.

2
Department of Electronics and Communication Engineering, Thapar University, Patiala, Punjab, India.

Accepted 07 April, 2011

The key issue of applying Turbo codes is to find an efficient implementation of turbo decoder. This
paper addresses the implementation of a simplified and efficient turbo decoder in field programmable
gate array (FPGA) technology. A simplified and efficient implementation of a Turbo decoder with minor
performance loss has been proposed. An integer Turbo decoder based on the standard 2’s complement
number system after considering the issues of dynamic range, truncation effect and other algorithm
related subjects has been introduced. The efficient implementation comes from algorithm modification,
integer arithmetic and compact hardware management. Based on the Max-Log-MAP decoding
algorithm, the branch metric is modified by weighting a priori value, resulting in a significant BER
improvement. The Turbo decoder takes in 8-level integer inputs generates 7-bit soft-decisions and
calculates all metrics on integers, avoiding complex floating point or fixed-point arithmetic. By
manipulating memory address, delay associated with interleaving and de-interleaving is eliminated,
resulting in much higher throughput. Also, by taking advantage of identical decoder function, Turbo
decoder is implemented in a single-decoder structure, making efficient use of memory and logic cells.

Key words: Turbo, Max-Log-MAP, field programmable gate array, bit error ratio.

INTRODUCTION

Turbo codes are error-correcting codes based on parallel
concatenation of convolutional codes and can achieve
near channel capacity performance with a long block size
and many decoding iterations. Due to its outstanding
performance, Turbo coding has extensive applications in
error prone environments such as wireless personal
communications and deep-space communications. The
key issue of applying Turbo codes is to find an efficient
implementation of Turbo decoder. This requires
simplification of complex Turbo decoding algorithms and
compact hardware management. This paper addresses
the implementation of a simplified and efficient Turbo
decoder in field programmable gate array (FPGA)
technology. FPGAs offer attractive advantages over other
implementations of application specific integrated circuits
(ASICs). Specifically, they are easily configurable,
reducing significantly development time and non-recurring

*Corresponding author. E-mail: shivani.pasricha@gmail.com.
Tel: +91-9990940202.

engineering costs. A design can be easily
conceptualized, tailored to a specific application, then
implemented and tested at low cost and minimal risk.
That is, implementing a specified functionality using an
FPGA, while simultaneously trying to optimize the
architecture across the dimensions of silicon area,
system throughput and power consumption. The low unit
cost for the smaller and slower devices is also attractive.
Consequently, for high performance applications, special
attention must be devoted to architectural and algorithmic
issues, if designs well matched to the capabilities of
FPGAs are to be realized. For estimating the states or
outputs of a Markov process observed in the white noise,
symbol-by-symbol MAP algorithm is optimal. However,
this algorithm, even in its recursive form, poses technical
difficulties because numerical representation of
probabilities, non-linear functions and because of mixed
multiplications and additions of these values.

The Log-MAP algorithm, which is the MAP decoding
algorithm in logarithmic domain, is optimum for estimating
the outputs of a Markov process. However, the optimal
Turbo decoding algorithm (Choi et al., 2006) is

computationally intensive due to the function max*(x, y) =
ln (e

x
+ e

y
). The max*(x, y) function can be expressed as:

max*(x, y) = max (x, y) + ln (1+ e

-| x-y |
)

that is, max* (x, y) = max (x, y) + fMAP(|x-y|)

The max* operation is equivalent to finding the maximum
of the two inputs and then adding a “correction term
fMAP(|x-y|). A straightforward implementation of the Log-
MAP is to store the 8 to 16 values of the correction term
in a look-up table. Another approach is to set correction
term to zero to obtain an extremely simple
implementation at the expense of around 0.5 dB loss in
coding gain. However, both the approaches are not well
suited for the emerging global third generation Wideband
CDMA wireless systems. First, with the intrinsic
interference-limited nature of CDMA, the system capacity
is directly linked to the operating SNR for a particular
quality of service requirement. For certain setups, the
loss of 0.5 dB coding gain can amount to 10% loss in
capacity. Hence, it is preferable to use more accurate
implementations for performance improvement.
Secondly, to support enough decoding iterations for the
highest data rate (1 Mbps), the look-up table approach
could turn out to be cumbersome as multiple look-up
tables are required for a wide range of signal-to-noise
(SNRs), and in turn will also increase the hardware cost.
The correction term is approximated (Yuan and Ye, 2008)
by linear function and the performance of the linear-MAP
was shown to be close to the optimal solution. In our
implementation, a modified Max-Log-MAP decoding
algorithm is proposed to effectively close the
performance gap between Max-Log-MAP. This approach
is simpler than the linear-MAP algorithm. Another set of
sub-optimal decoding algorithms is based on the soft-
output viterbi algorithm (SOVA). It was shown (Boutillon
et al., 2007) that the best performance that the SOVA-
based algorithm can achieve is the same as that of Max-
Log-MAP (Lingyan et al., 2006).

Computational complexity is estimated for the most
popular Turbo decoding algorithms: Log-MAP, Max-Log-
MAP and SOVA (Fagoonee and Honary, 2004).
Complexity studies showed that Max-Log-MAP is the
best compromise between performance and complexity.
Therefore, our implementation will be based on the Max-
Log-MAP algorithm. Regarding Turbo decoder
implementations, several interesting implementations
were recently proposed, most of which are based on
fixed-point arithmetic. Since fixed-point operations require
multiplications and divisions for normalization,
computational complexity is still high. In this paper, we
propose an integer Turbo decoder based on the standard
2’s complement number system after considering the
issues of dynamic range, truncation effect and other
algorithm related subjects. The turbo decoder considered
in this paper has the following specifications:

Verma and Kumar 2339

i) Code rate R = 1/3.
ii) Generator polynomial: g = (13, 15) oct.
iii) Puncturing pattern: even/odd parity.
iv) Block size: N = 40 to 5114 bits.
v) Interleaver: S-random interleaver with S = 18.
vi) Trellis termination: none.
vii) Considered modulation: BPSK’.

TURBO CODES STRUCTURE

Turbo encoders consist of two recursive systematic
convolutional (RSC) encoders and a random interleaver
between them as shown in Figure 1a. The conventional
Turbo decoders contain two SISO (soft input soft output)
decoders, which are associated with the two RSC
encoders, and an interleaver and a de-interleaver
between those two decoders as depicted in Figure 1b.
The SISO decoders generate soft outputs, which
represent how reliable the outputs are. In the MAP-based
algorithm, the decoding process consists of two steps
forward recursion and backward recursion. During a
forward recursion, for each trellis transition of the branch
metrics are calculated and stored and the forward node
metrics are updated. After receiving the whole block of
noisy codewords, the decoder starts off backward
recursion to generate soft-decisions. In the following, we
summarize the MAP, Max-Log-MAP decoding algorithms
and then present our modification.

MAP algorithm

Let u = (u1, u2, …, uN) be the binary random variables
representing information bits. In the systematic encoders,
one of the outputs xs = (x

s
1, x

s
2, …, x

s
N) is identical to the

information sequence u. The other is the parity
information sequence output xp = (x

p
1, x

p
2, …, x

p
N). We

assume BPSK modulation and an AWGN channel with
noise spectrum density No. The noisy versions of the
outputs is ys = (y

s
1, y

s
2, …, y

s
N) and yp = (y

p
1, y

p
2, …, y

p
N),

and y = (ys, yp) is used for simplicity. In the MAP decoder,
the decoder decides whether uk = +1 or uk = -1
depending on the sign of the following log-likelihood ratio
(LLR):

)|1(

)|1(
log)(

yuP

yuP
uL

k

k
kR

−=

+=
= (1)

Let Sk denote the state of the encoder at time k. It can
take values from 0 to 2M-1 where M is the number of
memory elements in the encoder. LLR can be rewritten
as:

∑ ∑
∑ ∑

−−−−

−−−−
=

)().().,,(

)().().,,(
log)(

11101

11111

kkkkkkkkk

kkkkkkkkk

kR
SSSSyss

SSSSyss
uL

βαγ

βαγ
 (2)

2340 Int. J. Phys. Sci.

Figure 1. Turbo code structure.

Where α is the forward recursion metric, β is the

backward recursion metric and γi is the branch metric.
They are defined as:

∑∑
− =

−−−=

1 0

111)().,,()(

kS i

kkkkkikk SSSyS αγα (3)

∑∑
+ =

++++=
1 0

1111)().,,()(
kS i

kkkkkikk SSSyS βγβ

(4)

)|().,,|().|().,|(),),,((1111 −−−− ==== kkrkkk

p

kk

s

kkkkkk

p

k

s

ki SSPSSiuypiuypSSiuqSSyyγ

(5)

The parameter q (uk = i/Sk, Sk-1) is either one or zero
depending on whether uk = i is possible for the transition
from state Sk-1 to Sk or not. Calculating p (y

s
k | uk = i) and

p (y
p
k| uk = i, Sk, Sk-1) is trivial if the channel is AWGN.

The last component Pr (Sk|Sk-1) usually has a fixed value
for all k. However, this is not the case in the iterative
decoding.

The ‘a priori’ probability of information bits generated by
the other MAP decoder must be considered in turbo
decoders.

Max-Log-MAP algorithm

In order to avoid the complexity of multiplications (Fowdur
and Soyjaudah, 2009; Yuanfei et al., 2009) these
equations can be converted to the additive form using the
following logarithmic quantities:

))(log()()),(log()()),(log()(kkkkkkkkkkkk SSSSSS γγββαα === (6)

The forward recursion and the backward recursion are

now represented in the additive form:

))(),,((max*)(111
),(1

−−− +=
−

kkkkki
iS

kk SSSyS
k

αγα (7)

))1(),,((max*)(111
),(1

++= +++
+

SkSSyS
kkkki

iS
kk

k

βγβ (8)

Where max* is a maximization function with a correction
term:

))exp(1log(max* ∑
≠

−++=

Mi

MiMi
i

AAAA (9)

i
i

M AA max= (10)

The corrective term can be implemented using a small
look-up table. The branch metrics are calculated as:

])([
2

1
),,(1

p

k

p

kck
s
kckk

e
inkkkk xyLuyLuuLSSy ++=−γ (11)

Where)(k
e
in uL is the a-priori information calculated by

the other decoder and
o

c
c

N

E
L

4
= .

As mentioned earlier, an AWGN channel is assumed and

oN is noise spectral density and cE is the energy per

coded bit. The signal noise ratio
o

c

N

E
 has to be estimated

to calculate the branch metrics. Using Equation 9, the
LLR is represented as:

Verma and Kumar 2341

Figure 2. Performance of Turbo code with different scaling factors and block length 5114 bits.

))()(),,((max*

))()(),,((max*)(

1110),(

1111),(

1

1

kkkkkkkSS

kkkkkkkSSkR

SSSSy

SSSSyuL

kk

kk

βαγ

βαγ

++−

++=

−−−

−−−

−

−
 (12)

In the iterative decoding, LLR is divided into three terms:

)()()(
k

e

outk

e

in

s

kckR
uLuLyLuL ++= (13)

The last term is called “extrinsic information” and only this
term should be fed back to the input of the other decoder

as a-priori information. Therefore,)(k
e
in

s
kc uLyL + must be

subtracted from)(kR uL before it is fed back to the other

decoder.)(kR uL and)(k
e
out uL are used to terminate the

iteration of the Turbo decoding. Therefore,)(k
e
out uL can

be expressed as:

))((
2

)(
)(k

e
in

s
k

k
k

e
out uLy

uL
uL +−= (14)

As earlier said, the term)(k
e
out uL is the information

exchanged between the constituent decoders. In our
implementation, we apply the Max-Log-MAP algorithm
with a modification of the branch metrics. We weigh a-
priori values with a scaling factor s, resulting in the
following:

suLy
uL

uL k

e

in

s

k
k

k

e

out

+−=))((

2

)(
)((15)

The effect of scaling factor on the BER performance was
studied and at least 1000 errors were collected. Figure 2
shows the BER performance of the best evaluated
scaling factor compared to the standard Max-Log-MAP

decoding algorithm for block length 5114 with s = 1.0 and
AWGN and s = 0.7 gives the best BER performance for
our Turbo Code. We find that a properly selected scaling
factor can improve the performance of Max-Log-MAP by
0.3 dB, giving a near optimal (Log-MAP) BER
performance. The BER improvement is due to the fact
that the scaling factor s can effectively mitigate error
propagation through iterations. The scaling factor s
allows us the variation in the information exchanged
between the decoders. In qualitative terms, a large value
of s makes the previous decoder outcome dominate the
current decoding results, whereas a small value of s
makes one decoder less dependent on the other
decoder’s result.

TURBO DECODER ARCHITECTURE

The implementation architecture for a Turbo decoder can
take a serial or a parallel approach. In the serial
approach, a pair of decoders is used repetitively and the
data input is processed at the higher speed (denoted as L
bps in Figure 3) than the speed of incoming received bits
(denoted as K bps). On the other hand, the parallel form
of Turbo decoder would require multiple pair of MAP
decoders and huge amount of memory for interleavers,
de-interleavers and received data buffers. Unless the
very high-speed decoder is needed, the serial approach
would be practical.

MAP decoder architecture

Now the implementation has been reduced to a series of
decoder operations, the obvious remaining drawback of
the Map algorithm is the excessive memory required. The
entire history of the state metrics must be stored out to
the end of the trellis, at which point the backward

2342 Int. J. Phys. Sci.

This example is used to show BER performance of turbo code in AWGN channel.
Iterative MAP algorithm is used to decode.

Turbo Code

NO channel coding

"block" is the size of turbo code interleaver block.It shall be 378, 570, or 762.....
"coderate" is the code rate of encoder.
coderate =0, rate=1/2;
coderate =1, rate=1/3;
 coderate=2,rate =1/4

DF

DF1

DeadlockManager=ReportDeadlock

SchedulerType=ClusterLoop
OutVar=""
DefaultSeed=1234567

DefaultTimeStop=100.0 usec
DefaultTimeStart=0.0 usec
DefaultNumericStop=100.0

DefaultNumericStart=0.0

LogicToNRZ

X1
Amplitude=-1.0

Const
C6

Level=0.0

NRZToLogic

X6
Amplitude=-1.0

Sgn

S1

LogicToNRZ
X2

Amplitude=-1.0
Bits
B1

LFSR_InitState=1

LFSR_Length=12
ProbOfZero=0.5

Type=Random

VAR
VAR1
noise_step=0.5

Frame1=100
Frame2=100
Dot=5

block=1530
coderate=0

Eqn
Var

CDMA_BER_Sink
BER_Sink1

Test=Frame1*Frame2
Dot=Dot

Group=1
IniLen=0

CDMA_AWGN_Ch

C4
EbNoRatio=0.0
FrameNumberA=Frame1

FrameNumberB=Frame2
FrameSymbolNum=block
SymbolPerBit=1

Step=noise_step

CDMA_ErrorRate
C1

TestLength=block

CDMA_AWGN_Ch
C3

EbNoRatio=0.0
FrameNumberA=Frame1
FrameNumberB=Frame2

FrameSymbolNum=(block+6)*(coderate+2)
SymbolPerBit=coderate+2
Step=noise_step

CDMA2K_TurboMAPDecoder
C7
OutputFrameLen=block

CodeRate=coderate

CDMA2K_TurboMAPDecoder
C8

OutputFrameLen=block
CodeRate=coderate

CDMA2K_TurboMAPDecoder
C9

OutputFrameLen=block
CodeRate=coderate

CDMA_AddTail
C2
FrameLength=block

TailLength=6

CDMA2K_TurboEncoder
C11

InputFrameLen=block+6
CodeRate=coderate

CDMA_ErrorRate

C5
TestLength=block

CDMA_BER_Sink

BER_Sink2
Test=Frame1*Frame2
Dot=Dot

Group=1
IniLen=0

Figure 3. Simulation set-up for turbo codes.

algorithm begins and decisions can be output starting
with the last branch, without the need to store any but the
last set of state metrics computed backward. This storage
requirement is obviously very large; for an 8-state code,
assuming 7-bit state metrics, it would require 56 bits of
storage per branch, for a total of 56,000 bits for a 1000-
bit block, which in any case is the minimal for Turbo code
performance. Our implementation of MAP decoder is
based on a technique proposed in (Benedetto and
Montorsi, 1996) which reduces the memory requirement
for a 8-state code to just a few thousand bits,
independent of the block length(Kim et al., 2000). The
technique can best be described by referring to the timing
diagram of Figure 4, which indicates the bit processing
times for one forward processor and two backward
processors operating in synchronism with the received
branch symbols that is, computing one set of state
metrics during each received branch time (bit time for a
binary trellis). The basic idea behind this approach is that
Viterbi Algorithm can start cold in any state at any time.
After a few constraint lengths, the set of state metrics are
as reliable as if the process had been started at the initial
(or at the final) node. Let’s say that this learning period
for the trellis is L branches, which are 16 in case of

8-state code. This is equally true for forward as well as
backward algorithm, and assumes that subtracting at
every node an equal amount from each, normalizes all
state metrics. Let the received branch symbols be
delayed by 2 L branch times. Then the forward algorithm
will start at branch time 2 L. And also, it will compute all
the state metrics for each node every branch time and
storing these in memory. The first backward processor
starts at the same time, but processes backward from the
2 Lth node, setting every initial state metric to the same
value, not storing anything until branch time 3 L, at which
point it has built up reliable state metrics and it
encounters the last of the first set of L forward computed
metrics. (In Figure 4, the top line indicates the time index;
the remaining lines are labeled according to the times at
which the branches are processed. Also, unreliable
metric branch computations are shown as dashed lines).

At this point the Lth branch soft decisions are output by
performing the generalized dual-maxima process, and
the backward processor proceeds until it reaches the
initial node at time 4 L. Meanwhile, starting at time 3 L,
the second backward processor begins processing with
equal metrics at node 3 L, discarding all metrics until time
4 L, when it encounters the forward algorithm having

Verma and Kumar 2343

Figure 4. Timing diagram of forward and backward processors.

computed the state metrics for the 2 Lth node. The
generalized dual-maxima process is then turned on until
time 5 L, at which point all soft decision outputs from the
2 Lth to the Lth node will have been output. The two
backward processors hop forward 4 L branches every
time they have generated backward 2 L sets of state
metrics, and they time-share the output processor since
one generates the useful metrics, which are combined
with those of the forward algorithm. For the backward
algorithms, nothing needs to be stored except the metric
set of the last node. The forward algorithm needs to store
only 2 L sets of state metrics, since after its first 2 L
computations (performed by time 4 L), its first set of
metrics will be discarded, and the blank storage space
can then be filled starting with the forward-computed
metrics for the (2 L +1) th node (at branch time 4 L +1).
Thus, the storage requirements for a 8-state code using
7-bit state metrics 112 L bits in all, which for L = 16
amounts to approximately 1792 bits. The forward

recursion (α-unit) and the backward recursion unit (β-unit)
are identical except for the direction of recursion.

The α-unit is shown in Figure 5. It should be noted that
the state metrics keep on increasing as the recursion
goes on. Therefore, we need to adopt some
normalization scheme to avoid the explosion of the state
metrics.

Numerical range

Most Turbo decoder implementations are based on fixed-
point arithmetic (Fowdur and Soyjaudah, 2009).
Therefore, in the implementation of Turbo decoder, a
significant effort must be focused on dynamic range,
number density and normalization before choosing a
number system. Since, our design is a simplified
structure of Turbo decoder (of course, without significant
loss in BER performance), we chose standard 2’s
complement integer representation. For efficient
implementation, it is required to estimate the numerical
range of various metrics such that only a necessary
number of bits would be used for each metric. In our
implementation, assuming that the demodulator output
produces 8-level (3-bit) output, the 3-bit value is
converted into a 4-bit integer value ranging from –4 to +4
(without 0). With our modified Max-Log-MAP (s = 0.7),
eight iterations and 3 dB SNR (Eb/No), simulations were
performed to deduce the range of soft-decisions and the
results indicate that they lie in the range of –48 to +48. In
the same way, the extrinsic values range from –30 to +30
and branch metrics from –13 to +13. As a result, 6 bits
are assigned for extrinsic values and soft-decisions, 5
bits for branch metrics and 8 bits for internal metrics.

Compared to fixed-point implementations, which

2344 Int. J. Phys. Sci.

Figure 5. α-unit (forward recursion unit).

Figure 6. Forward/Backward node metric normalization.

require 8 bits for extrinsic values, 7 bits for demodulator
outputs and at least 10 bits for internal metrics, it is clear
to see the benefit of the integer based implementation.

Node metric normalization

As the recursion process progresses, forward/backward
node metrics accumulate, this can easily overflow and
may underflow during the first few updates. The
overflow/underflow problem can be solved by metric
normalization. A threshold value P is used, which is
compared with all the node metrics for each decoded bit
in both forward and backward recursion. If the absolute
value of any node metric is greater than P, then all the

node metrics are shifted towards the center as shown in
Figure 6.

Note that the shifting is done for all node metrics so
that the soft-decision values are not affected. The
threshold value is chosen such that the update (the node
metric plus a branch metric) does not cause overflow and
the logic required for comparison is minimized. In our
implementation, the threshold values are set to be –85
and 86. With normalization, node metrics can be
represented using 8 bits.

Truncation effect

Truncation occurs in branch metric calculation (Benedetto

Verma and Kumar 2345

Table 1. Example of truncated results by different truncation method.

Z -4 -3 -2 -1 0 1 2 3 4

Z/2 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

Round(Z/2) -2 -2 -1 -1 0 1 1 2 2

Fix(Z/2) -2 -1 -1 0 0 0 1 2 2

Floor(Z/2) -2 -2 -1 -1 0 0 1 1 2

Ceil(Z/2) -2 -1 -1 0 0 1 1 2 2

Figure 7. Truncation effect on BER.

and Montorsi, 1996) due to the division by 2 and the a-
priori scaling factor s. Four truncation methods are
considered round, fix, ceil and floor; each generate
different truncation results as shown in Table 1. Although
the round function is more systematic than other
truncation functions, simulations in Figures 7 and 8
shows that the floor and ceil functions perform better than
the other two methods. In our implementation, the floor
function for truncation is used.

FPGA IMPLEMENTATION

Interleaver/De-interleaver

Turbo decoder requires an interleaver and a de-
interleaver to perform proper permutation of systematic
bits and extrinsic values. In a conventional turbo decoder
design, there will be a separate functional block to carry
out the interleaving/de-interleaving function, which will
require a fixed amount of time to permute/un-permute its
contents (Yuanfei et al., 2009). However, in our
implementation, all the permutations are performed by

address manipulation that requires no addition delay in
the processing. Figure 9 shows the address generator
that generates addresses for a decoder to read/write
required information from a memory. Because the first
decoder processes un-permuted information, systematic
bits and extrinsic value are read sequentially from 0 to N-
1. They are then processed and stored in the same
address. For the second decoder, information is
processed based on the permutation order; therefore, the
sequential index is now used to retrieve a permutation
index from ROM. This ROM based address that serves
as the index is then used to retrieve the required
information for processing. Once the information is
processed, the result is again stored in the same index
completing the interleaving/de-interleaving process.

All the information is updated and stored properly by
manipulating the memory address for decoders; therefore
each decoder is ready to decode immediately after the
other decoder is finished, resulting no delay to process
interleaving/de-interleaving.

The overall decoding process takes far less clock
cycles to finish up compared to that with traditional
interleaving/de-interleaving process.

2346 Int. J. Phys. Sci.

2
4

9
9

9
5

.2
0

0
0

0
0

2
4

9
9

9
5

.4
0

0
0

0
0

2
4

9
9

9
5

.6
0

0
0

0
0

2
4

9
9

9
5

.8
0

0
0

0
0

2
4

9
9

9
6

.0
0

0
0

0
0

2
4

9
9

9
6

.2
0

0
0

0
0

2
4

9
9

9
6

.4
0

0
0

0
0

2
4

9
9

9
6

.6
0

0
0

0
0

2
4

9
9

9
6

.8
0

0
0

0
0

2
4

9
9

9
7

.0
0

0
0

0
0

2
4

9
9

9
7

.2
0

0
0

0
0

2
4

9
9

9
7

.4
0

0
0

0
0

2
4

9
9

9
7

.6
0

0
0

0
0

2
4

9
9

9
7

.8
0

0
0

0
0

2
4

9
9

9
8

.0
0

0
0

0
0

2
4

9
9

9
8

.2
0

0
0

0
0

2
4

9
9

9
8

.4
0

0
0

0
0

2
4

9
9

9
8

.6
0

0
0

0
0

2
4

9
9

9
8

.8
0

0
0

0
0

2
4

9
9

9
5

.0
0

0
0

0
0

2
4

9
9

9
9

.0
0

0
0

0
0

1E-4

1E-3

1E-2

1E-1

1E-5

2E-1

Eb/N0(dB)

v
s
(T

u
rb

o
C

o
d
e
R

e
s
u
lt1

..
C

o
d
e
R

a
te

1
_
2
,
T

u
rb

o
C

o
d
e
R

e
s
u
lt1

..
E

b
_
N

0
)

<
in

v
a
lid

>
v
s
(T

u
rb

o
C

o
d
e
R

e
s
u
lt1

..
C

o
d
e
R

a
te

1
_
3
,
T

u
rb

o
C

o
d
e
R

e
s
u
lt1

..
E

b
_
N

0
)

<
in

v
a
lid

>
v
s
(u

n
c
o
d
e
d
..
B

E
R

,
T

u
rb

o
C

o
d
e
R

e
s
u
lt1

..
E

b
_
N

0
)

<
in

v
a
lid

>
B

E
R

BER performance for different code rate (Interleaver size is 1530)

Figure 8. BER versus EB/NO.

Figure 9. Address generator for interleaving and de-interleaving function.

Single decoder design

In our implementation, it is assumed that the same

constituent code is used in the turbo encoder, and then
the constituent decoders are identical. Therefore, the
turbo decoder can be simplified by using a single decoder

Verma and Kumar 2347

Figure 10. Single decoder design for Turbo decoder.

as shown in Figure 10. The switch is toggled according to
the decoder number being operational while processing
the data bits. When the first decoder is to be used, the
switches are set to their lower position, which bypasses
all interleaving and de-interleaving functions. When the
first decoder has finished, the switches are then moved to
the upper position to reconfigure the design as the
second decoder that functions on permuted information.
This process is repeated until the required number of
iterations is completed.

RESULTS AND CONCLUSION

Turbo decoder was described in Verilog hardware
description language and implemented on Xilinx Virtex
series XCV300E FPGA chip. The design utilized almost
3447 out of 6912 logic cells and approximately 28 RAM
blocks out of 48 total RAM blocks in the device. In
addition, the design required no external components and
consumes approximately 695 mW during normal
operation. The FPGA-based turbo decoder with 8
iterations can operate more than 1 Mbps throughput at a
clock rate of 25 MHz. In this paper, we have
demonstrated a simplified and efficient implementation of
a Turbo decoder with minor performance loss. The
efficient implementation comes from algorithm
modification, integer arithmetic and compact hardware
management. Based on the Max-Log-MAP decoding
algorithm, we modify the branch metric by weighting a
priori value, resulting in a significant BER improvement.
The Turbo decoder takes in 8-level integer inputs
generates 7-bit soft-decisions and calculates all metrics
on integers, avoiding complex floating point or fixed-point
arithmetic. By manipulating memory address, delay
associated with interleaving and de-interleaving is

eliminated, resulting in much higher throughput. Also, by
taking advantage of identical decoder function, we
implemented our Turbo decoder in a single-decoder
structure, making efficient use of memory and logic cells.

REFERENCES

Benedetto S, Montorsi G (1996). "Unveiling Turbo Codes: Some

Results on Parallel Concatenated Coding Schemes." IEEE Trans.
Inf.Theory, 42(2): 409-428.

Boutillon E, Douillard C, Montorsi G (2007). "Iterative Decoding of
Concatenated Convolutional Codes: Implementation Issues", Proc.
IEEE., 95(6): 1201-1227.

Choi DG, Jeong JH, Kim HM, Jung JW (2006). "High-Speed Adaptive
Turbo Decoding Algorithm and Its Implementation." APCC'06. Asia-
Pacific Conf. Commun., pp. 1–5.

Fagoonee L, Honary B (2004). "Application of turbo codes\l to tactical
communications." "Application of turbo codes\l to tactical
communications." Comput. Netw., 46(5): 741-749.

Fowdur P, Soyjaudah KMS (2009). "Joint source channel decoding and
iterative symbol combining with turbo trellis-coded modulation." Sig.
Process., 89(4): 570-582.

Kim DW, Taek WK, Jun RC, Jun JK (2000). "A modified two-step
SOVA-based turbo decoder with a fixed scaling factor." Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva. 2000 IEEE Int.
Symp., 4: 37-40.

Lingyan S, Hongwei S, Keirn Z, Kumar BVKV (2006). "Field
programmable gate array (FPGA) for iterative code evaluation." IEEE
Trans. Magnet., 42(2): Part 1.

Yuan J, Ye W (2008). "A novel block turbo code\l for high-speed long-
haul DWDM optical communication systems",Optik – Int. J. Light
Electron Opt., In Press.

Yuanfei N, Jianhua G, Yong W (2009). "Iterative\l SNR estimation using
a priori information", Digital Sig. Process., 19(2): 278-286.

