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In this paper, we use a polynomial scheme for solving the system of nonlinear boundary value 
problems associated with nuclear fission inside supercritical water nuclear reactors. The results are 
calculated in terms of series with easily computable components. The suggested method is applied 
without any discretization or transformation, but under some restrictive assumptions. To illustrate the 
implementation and efficiency of the proposed method, plots of the wavelength-dependent neutron flux 
profile are provided. 
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INTRODUCTION 
 
Several nuclear reactor types have been used in the last 
decades. Very high temperature (VHT), supercritical-
water-cooled (SWC) and molten-salt (MS) reactors are 
among the most known (Gallaway et al., 2008; 
Yoshikawa and Wakabayashi, 1970; Yousif et al., 2010; 
Corradini, 2009).  

Very high temperature (VHT) offer both the possibility 
of burning actinides to further reduce waste and 
significant advances in sustainability, safety physical 
protection and reliability. Such reactors use a graphite-
moderated core with a once-through uranium fuel cycle, 
using helium or molten salt as the coolant at about 960° 
value which allows hydrogen production. Supercritical-
water-cooled reactors (SCWR) use supercritical water as 
working fluid while molten-salt reactors (MSR) nuclear 
fuel is dissolved in the molten fluoride salt as ThF4 or 
UF4, under low pressures and high temperatures. 

Neutron transport equation, or neutron Boltzmann 
equation, is an equation which characterizes a relatively 
small number of neutrons colliding in a vast sea of nuclei 
inside such reactors (Kulikowska, 2000; Lewis and Miller, 
1993). In this context, a statistical mechanics formulation, 
first attempted by Boltzmann for interacting gases, 
provides appropriate description of this phenomenon 
inside supercritical water nuclear reactors. Boltzmann’s 
equation based on physical arguments, such as finite 
particle and quantum theory, gives a more physically 

precise picture of particle-particle interaction, as 
presented by Bell and Glasstone (1970) and Stammler 
and Abbate (1983). 
 
 
PRESENTATION AND PROBLEM FORMALIZATION 
 
Supercritical water reactors (SCWR) are designed according to the 
Generation IV reactor concept that uses supercritical water as 
working fluid. Such reactors usually operate at high pressure and 
temperature (Figure 1). 

Supercritical water Generation IV reactor concept has been 
appreciated for the ability to consume existing nuclear waste in the 
production of electricity and the relative efficiency against classical 
nuclear fuel devices. Nevertheless, some of their drawbacks are 
safety risks which may be greater due to little experience with new 
designs and specific risks due to the use of mixtures of metallic 
Sodium and Argon as a coolant. These materials either explosively 
reacts with water or act as phyxiants. 

The neutron transport equation inside supercritical water reactors 
(SCWR) has been solved using several techniques and protocols 
(Mohammadpour and Shamshirband, 2011; Alnour et al., 2011; 
Kebwaro et al., 2011; Omeje et al., 2011). In this study, several 
assumptions have been taken into account: 
 
1) Each neutron is considered as a subatomic particle having the 
characteristics strong force of the standard model.  
2) A quantum mechanical description is adopted, so that an 
involved system of Schrodinger equations describes neutron motion 
between and within nuclei.  
3) For   high    speed,   neutrons   are    considered    as   relativistic 

http://en.wikipedia.org/wiki/Generation_IV_reactor
http://en.wikipedia.org/wiki/Supercritical_fluid
http://en.wikipedia.org/wiki/Working_fluid
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Figure 1. Supercritical water reactor (SCWR) scheme. 

 
 
 
  particles with variation of its mass over time.  
4) Under moderate speed, neutron motion is governed by a 
complete set of Maxwell’s equations. 
 

 

Under these presumptions, integro-differential formulation, 
according to the most common neutron transport and reactor 
physics theory (Huber et al. 1998; Moshfegh and Modarres, 2005) 
is given as follows: 
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where χ(E) is the distribution function, EV  is the neutron speed, Σ 

and Σf are macroscopic cross-sections, Σs is the scattering cross-

section, ψ is the neutron angular flux, E and E are energies,    

 

and are inverse neutron directions while Q̂ is the source 

function (Weber and Weigel, 1988; Zeng-Hua et al., 2004). 
Employing the method of variable separation and for simplification 
purposes, it may be written: 
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If the function 2  is separable such that: 
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       (4) 
Using the method of integrating factor or by direct integration, the 
solution to Equations 3 and 4 are as follows: 
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where 0  and 1  are constants.  

 
This form of solution is very interesting because it allows different 
choices for the constants. Consequently, the reactor nature, the 
intended use and different applications may be easily imposed on 
the analytical expression for the neutron flux. 
From Equation 2, the expression for the flux is given as: 
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SOLUTIONS AND DISCUSSION 
 

 
The neutron transport equation without delayed neutrons 
is given as (Weber and Weigel, 1988): 
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where .
ˆ

extQ  is the external sources of neutrons, and EV  

is the average number of neutrons per fission. 
The equation assumes that all neutrons are emitted 

instantaneously at the time of fission. In fact, small 
fraction of neutrons is emitted later due to certain fission 
products (Zeng-Hua et al. 2004). Now, if we seek as 
asymptotic solutions to Equation 7 in the form: 
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where the solution satisfies the boundary conditions. If 

we suppose that the integral 
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where 1k and 2k are core reactor characteristic constants. 

For solving Equation 8, the Boubaker Polynomials 
Expansion Scheme (BPES) (Ghanouchi et al., 2008; 
Awojoyogbe and Boubaker, 2009; Labiadh and 
Boubaker, 2007; Slama et al., 2009, 2008; Tabatabaei et 
al., 2009; Fridjine and Amlouk, 2009; Belhadj et al., 
2009a; 2009b, Barry and Hennessy, 2010; Yildirim et al., 
2010; Kumar, 2010; Milgram, 2011)  is proposed. This 
scheme is applied through setting the expression:  
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Figure 2. Neutron flux profile for different wavelengths. 
 
 
 

where kB4 are the 4k-order Boubaker polynomials, r  is 

the radius ( ],0[ Rr ), k are kB4 minimal positive roots, 

0N  is a prefixed integer, and  
0..1 Nkk 

  are unknown 

pondering real coefficients. 
The main advantage of this step lies in Equation 10 

which ensures verifying the four boundary conditions in 
Equation 9, at the earliest stage of resolution protocol. In 
fact, due to the properties of the Boubaker polynomials 
(Weber and Weigel, 1988; Yildirim et al., 2010; 
Yoshikawa and Wakabayashi, 1970; Yousif et al., 2010; 

Zeng-Hua et al., 2004), and since 
0..1 Nkk 

  are roots of 

0..14 NkkB


, Equation 7 is reduced to: 
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The solution is then assigned to the set of pondering real 
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which gives the following solution to Equation 7: 
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with 3 constant.     

  
From Equation 13 and earlier assumptions, it becomes: 
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Equation 14 is the neutron flux which defined the 
distribution neutron inside supercritical water nuclear 
reactors. Plots of wavelength-dependent flux profile are 
presented in Figure 2. 

 
 
CONCLUSION 

 
In this paper, we have used a polynomial scheme for 
solving the system of nonlinear boundary value problems 
associated with nuclear fission inside the supercritical 
water nuclear reactors. It is worth mentioning that we 
have solved a nonlinear system of boundary value 
problem by our proposed technique which consists of 
ensuring boundary conditions validity before solving the 
main equations. We give an example of solution for 
systems which are highly nonlinear, with compound 
Newmann-Dirichlet boundary conditions. After applying 
our proposed technique we obtained series solution as 
well as its graphical representation over the whole 
wavelength domain. We remark that our proposed 
method is well suited for such physical problems as it 
provides solution in less number of iterations. It is worth 
mentioning that the method is capable of reducing the 
volume of the computational work as compared to the 
classical protocols. The use of natural and experimental 
restrictions   allows   better  understanding  on  how  each  
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parameters involved in nuclear reactor modeling interact 
with one another and further in-depth understanding of 
Physics better, giving us the opportunity to manipulate 
the parameters within experiment. The advantages of the 
performed method will be explored one at a time in our 
next investigation by introduction of Gauss-Cauchy-type 
boundary conditions. . 
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