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We investigate the NP-hard absolute value equation (AVE) Ax - |x| = b, where A is an arbitrary square 
matrix whose singular values exceed one. The significance of the absolute value equations arises from 
the fact that linear programs, quadratic programs, bimatrix games and other problems can all be 
reduced to the linear complementarity problem that in turn is equivalent to the absolute value equations. 
In this paper, we present a smoothing method for the AVE. First, we replace the absolute value function 
by a smooth one, called aggregate function. With this smoothing technique, the non-smooth AVE is 
formulated as a smooth nonlinear equations, furthermore, an unconstrained differentiable optimization 
problem. Then we adopt quasi-Newton method to solve this problem. Numerical results indicate that the 
method is feasible and effective to absolute value equations.  
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INTRODUCTION  
 
We consider the absolute value equation (AVE): 
 

Ax x b=−                                                                  (1)                                                                             

                                                                                                                                                  

where n nA R ×∈ , , nx b R∈ , and x  denotes the vector 

with absolute values of each component of x . A slightly 

more general form of the AVE was introduced in John 
(2004) and investigated in a more general context in 
Mangasarian (2007a).  

The finite-dimensional variational inequality (VI), which 
is a generalization of the nonlinear complementarity 
problem (NCP), provides a broad unifying setting for the 
study of optimization and equilibrium problems and 
serves as the main computational framework for the 
practical solution of a host of continuum problems in the 
mathematical sciences. As were shown in Cottle et al. 
(1968, 1992), the general NP-hard linear complemen-
tarity problem (LCP) that subsumes many mathematical 
programming problems can be formulated as an absolute 
value equation such as (1). This implies  that  AVE  (1)  is  
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NP-hard in general form. Theoretical analysis focuses on 
the theorem of alternatives, various equivalent reformula-
tions, and the existence and nonexistence of solutions. 
John (2004) provides a theorem of the alternatives for a 
more general form of AVE, Ax +B|x|=b, and enlightens 
the relation between the AVE and the interval matrix. 
Mangasarian (2006), the AVE is shown to be equivalent 
to the bilinear program, the generalized LCP, and the 

standard LCP if 1 is not an eigenvalue of A . Based on 
the LCP reformulation, sufficient conditions for the 
existence and nonexistence of solutions are given.  

Prokopyev (2009) proved that the AVE (1) can be 
equivalently reformulated as a standard LCP without any 

assumption on A  and B , and discussed unique 
solvability of AVE (1). Hu and Huang (2009) reformulated 
a system of absolute value equation as a standard linear 
complementarity problem without any assumption and 
give some existence and convexity results for the solution 
set of the AVE (1). 

It is worth mentioning that any LCP can be reduced to 
the AVE, which owns a very special and simple structure. 
Hence how to solve the AVE directly attracts much 
attention. Based on a new reformulation of the AVE (1) 
as the minimization of a parameter-free piecewise linear 
concave   minimization   problem   on   a   polyhedral   set,  
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Mangasarian (2007b) proposed a finite computational 
algorithm that is solved by a finite succession of linear 
programs. In the recent interesting paper of Mangasarian 
(2009a), a semismooth Newton method is proposed for 
solving the AVE, which largely shortens the computation 
time than the succession of linear programs (SLP) 
method. It shows that the semismooth Newton iterates 
are well defined and bounded when the singular values of 

A  exceed 1. However, the global linear convergence of 
the method is only guaranteed under more stringent 

condition than the singular values of A  exceed 1. 
Mangasarian (2009b) formulated the NP-hard n-
dimensional knapsack feasibility problem as an 
equivalent absolute value equation in an n-dimensional 
noninteger real variable space and proposed a finite 
succession of linear programs for solving the AVE (1).  

A generalized Newton method, which has global and 
finite convergence, was proposed for the AVE by Zhang 
et al. (2009). The method utilizes both the semismooth 
and the smoothing Newton steps, in which the semi-
smooth Newton step guarantees the finite convergence 
and the smoothing Newton step contributes to the global 
convergence. A smoothing Newton algorithm to solve the 
AVE (1) was presented by Louis Caccetta (2011). The 
algorithm was proved to be globally convergent and the 
convergence rate was quadratic under the condition that 

the singular values of A  exceed 1. This condition was 
weaker than the one used in Mangasarian (2009a). 

Recently, AVE (1) has been investigated in Jiri (2009a, 
b), Yong (2009, 2010), and Noor et al. (2011a, b). Yong 
(2010) adopted particle swarm optimization (PSO) to 
AVE based on aggregate function, and Noor (2011a, b) 
proposed iterative method for solving absolute value 
equations. 

In this paper, we present a new method for solving AVE 
(1). We replace the absolute value function by a smooth 
one, called aggregate function. With this smoothing 
technique, the non-smooth AVE is formulated as a 
smooth nonlinear equations; furthermore, an 
unconstrained differentiable optimization problem. Then, 
we adopt quasi-Newton method to AVE. The numerical 
experiments show that the proposed algorithm is effective 
in dealing with the AVE. 

In ‘A smoothing function and its properties’, we give a 
smoothing function and study its properties which will be 
used in the next section. Meanwhile, we give some 
propositions or lemmas for AVE that will be used later. In 
‘Newton method for AVE’ we describe and present 
smoothing Newton method to AVE. Effectiveness of the 
method is demonstrated in ‘Computational results’ by 
solving some randomly generated AVE problems with 

singular values of A  exceeding 1.  
We now describe our notation. All vectors will be 

column vectors unless transposed to a row vector. The 
scalar (inner) product of two vectors x  and y  in the n-

dimensional real space nR  will be denoted  by  T
x y .  For  

 
 
 
 

nx R∈ , the 2-norm will be denoted by ||x||, while |x| will 

denote the vector with absolute values of each 

component of x . The notation 
m nA R ×∈  will signify a 

real m n×  matrix. For such a matrix TA  will denote the 

transpose of A . We write I  for the identity matrix, e  for 

the vector of all ones ( I  and e  are suitable dimension in 

context). A vector of zeros in a real space of arbitrary 
dimension will be denoted by 0.  

For 
1 2

( , , , )T n

n
x x x x R= ∈L , min 1 2min{ , , , }

n
x x x x= L , 

that is, the minimal component of x . { }
i

X diag x=  for the 

diagonal matrix whose elements are the coordinates ix  

of n
x R∈ .  

 
 

A SMOOTHING FUNCTION AND ITS PROPERTIES 
 

Defining : n nH R R→=  by: 
 

( ) :H x Ax x b−= − .                                                 (2)                                                           

 

It is clear that x  is a solution of the AVE (1) if and only if 

0( )H x = . H  is a nonsmooth function due to the non-

differentiability of the absolute value function. Here, we 

give a smoothing function of H  and study its properties. 

We first give some properties of H  which will be used in 
‘Newton method for AVE’. 

The following results by Mangasarian et al. (2006) and 
Jiri (2009a) characterize solvability of AVE. 
 
 

Proposition 1 (Existence of AVE solution) 
 

(i) If 1 is not an eigenvalue of A  and the singular values 

of A  are merely greater or equal to 1, then the AVE (1) is 
solvable if the set S ≠ ∅ , where 

( ) ( ){ }0, 0S x A I x b A I x b= + − ≥ − − ≥ . 

(ii) If 0b <  and A
∞

<γ/2, where γ = mini |bi|/maxi |bi |, 

then AVE (1) has exactly 2
n
 distinct solutions, each of 

which has no zero components and a different sign 
pattern (Mangasarian, 2007a). 
 
 

Proposition 2 (Unique solvability of AVE) 
 

(i) The AVE (1) is uniquely solvable for any nb R∈  if the 

singular values of A  exceed 1. 

(ii) The AVE (1) is uniquely solvable for any nb R∈  if 
1

1A− < (Mangasarian, 2006). 

 
 

Proposition 3 (Existence of nonnegative solution) 
 

Let  0A ≥ ,   1A <    and   0b ≤ ,   then  a  nonnegative  



 

 
 
 
 
solution to the AVE (1) exists (Mangasarian, 2006). 
 
 
Proposition 4  
 
If the interval matrix [A −I, A + I ] is regular, then for each 

right-hand side b , the equation Ax -|x| = b has a unique 

solution (Jiri, 2009b). 
 
 
Lemma 1  
 

For a matrix n nA R ×∈ , the following conditions are 
equivalent: 
 

(i) The singular values of A  exceed 1. 

(ii) The minimum eigenvalue of TA A  exceeds 1. 

(iii) 1
1A− < . 

 
Lemma 2  
 

Suppose that A  is nonsingular and 1
1BA− < . Then, 

BA+  is nonsingular.(Stewart, 1973). 
 
 
Proof   
 

We first show that 
1

I A B
−+  is nonsingular. For, if not, 

then for some non-zero vector nx R∈  we have that 
1( ) 0I A B x−+ = , which shows 1 1x Bx B xA A− −≤ ≤ , 

so 1
1BA− ≥ , too, which gives the contradiction. Since 

1( ) ( )A B A I A B−+ = +  is nonsingular, we have BA+  

is nonsingular. 
 
 
Lemma 3  
 

Let ( )D diag d=  with [ 1,1], 1, 2, ,
i

i nd − =∈ L . Suppose 

1
1A− < . Then, A D+  is nonsingular. 

 
 
Proof   
 

Since 1 1
1D D DA A− −≤ < ≤ , by Lemma 2, we have 

A D+  is nonsingular. 
 
 
Definition 1  
 

A function , 0: n nH R Rµ µ→ >=  is called a uniformly 

smoothing   approximation   function   of    a   non-smooth  
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function : n nH R R→=  if, for any  nx R∈ , H µ  is 

continuously differentiable, and there exists a constant  
κ  such that (Qi, 2002): 
 

( ) ( ) ,    >0x xH Hµ κµ µ− ≤ ∀ . 

 
Where 0κ >  is constant that does not depend on x . 

Obviously, absolute value function x  is non-

differentiable. Let ( ) :x xϕ = . Since 

( ) : max{ , }, 1, 2, ,
i i i i

x x x x i nϕ = = − = L , we can adopt 

the aggregate function introduced in LI (1994) to smooth 
the max function. The smoothing approximation function 

to the function ( )
i

xϕ  is derived as: 

  

( ) ln exp expi i
i

x x
xµϕ µ

µ µ

    
= + −    

    
, 1,2, ,i n= L . 

 
According to Theorem 3 of LI (1994), we have: 
 

0 ( ) ( ) ln 2 ,   1, 2, ,
i i

x x i nµϕ ϕ µ≤ − ≤ ⋅ = L . 

 

Thus ( )
i

xµϕ  is a uniformly smoothing approximation 

function of ( )
i

xϕ . 

For any 0µ > , let 

( )1 2( ) ( ), ( ), , ( )
T

n
x x x xµ µ µ µϕ ϕ ϕ ϕ= L .  

Defining : n nH R Rµ →=  by:  

 

( ) ( )x xH Ax bµ µϕ= −− .                                        (3)                                                   

 
Clearly, H µ  is a smoothing function of H . Now we give 

some properties of H µ , which will be used in ‘Newton 

method for AVE’. 

By simple computation, for any  0µ > , the Jacobian of  

H µ  at nx R∈  is 

'

exp exp

, 1, 2, , .

exp exp

( )

i i

i i

x x

i n
x x

xH A diagµ

µ µ

µ µ

    
− −    

    =
    

+ −    
    

= − L

 
 
Theorem 1  
 

Suppose that 1
1A− < .  Then  ' ( )xHµ   is  nonsingular for  
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any  0µ > . 

 
 
Proof   
 

Note that for any 0µ > , 

exp exp exp

1 2 1

exp exp exp exp

i i i

i i i i

x x x

x x x x

µ µ µ

µ µ µ µ

     
− − −     

     = − <
       

+ − + −       
       

,

1, 2, ,i n= L . 

 

Hence, by Lemma 3, we have ' ( )xHµ  is nonsingular. 

 
 
Theorem 2  
 

Let ( )H x  and ( )xHµ  be defined as (2) and (3), 

respectively. Then, ( )xHµ  is a uniformly smoothing 

approximation function of ( )H x . 

 
 
Proof   
 

For any 0µ > , 

2

1
( ) ( ) ( )( ) ( ) ( ) ln 2

n

i ii
x x xH H x x x nµ µ µϕ ϕ ϕ ϕ µ

=
= =− − − ≤ ⋅∑ . 

If we denote ( )x µ  is the solution of (3), then ( )x µ  

converges to the solution of (1) as µ  goes to zero. 

Define : nR Rθ →=  by 
21

( )
2

( )x H xθ = .                                                    

For any 0µ > , Define : nR Rµθ →=  by 

21
( )

2
( )x H xµ µθ = . 

We can get the following theorem. 
 
 
Theorem 3  
 

Suppose that 1
1A− < . Then, for any 0µ >  and nx R∈  , 

( ) 0xµθ∇ =  implies that ( ) 0xµθ = . 

 
 

Proof  
 

For any  0µ >  and nx R∈ , 

'( ) [ ( )] ( )T
x x xH Hµ µ µθ∇ = . 

By Theorem 1, ' ( )xHµ  is nonsingular. Hence, if 

( ) 0xµθ∇ = , then ( )xHµ  and ( ) 0xµθ = . Following, we  

 
 
 
 

give quasi-Newton method for solving ( ) 0xHµ = . 

 
 
NEWTON METHOD FOR AVE 
 
Here, we give a smoothing Newton method for solving 

( ) 0xHµ = . First we state this algorithm as the following.  

 
 
Algorithm 1 Quasi-Newton method for AVE 
 
Step 1 
 

Given 
0

0, 0kµ > = . Establish the objective function  

21
( )

2
( )

k k
x H xµ µθ = . 

 
 
Step 2 
 

Apply quasi-Newton method to solve min ( )
kx

xµθ . Let  

arg min ( )
kk

x
xx µθ= . 

 
 
Step 3 
 
Check whether the stopping rule is satisfied. If satisfied, 
stop.  
 
 
Step 4 
 

Let 1 (1 ) /k k

k k
e e

µ µµ µ+ = + − , : 1k k= + . Return to step 

2. 
 
 
Remark 
 
(i) The most popular quasi-Newton algorithm is the BFGS 
method, named for its discoverers Broyden, Fletcher, 
Goldfarb, and Shanno. Quasi-Newton algorithm needs to 
be given initial point. In the algorithm, we can set the 
initial point or randomly select initial point. 
(ii) Unconstrained optimization algorithms often use 
BFGS or DFP method proposed by Jorge Nocedal et al. 
(1999). These algorithms are simple and easy. If we use 
Matlab's function fminunc for solving the optimization 
problem, the user simply provides a objective function 

( )
k

xµθ  for each subroutine. The default of function 

fminunc is the BFGS method. If you want to use the DFP 
algorithm in the program, add Optimset.Hessupdate = 
'dfp'. 

(iii) The origin of formula 1 (1 ) /k k

k k
e e

µ µµ µ+ = + −  is the  
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Figure 1. Reductions of min ( )
k

xµθ . 

 
 
 

Newton iteration of equation 1 0eµ − = . So 
k

µ  

converges to zero quadratically. 
 
 
COMPUTATIONAL RESULTS 
 
Example 1 
 
First we consider one AVE problem where the data (A, b) 
are: 
 

4 1 0 0 4

1 4 1 0 5
,        .

0 1 4 1 5

0 0 1 4 4

A b

   
   
   = =
   
   
   

   

 
Since singular values svd(A)=[5.6180, 4.6180, 3.3820, 
2.3820], the AVE is uniquely solvable by Proposition 2.  

Establish the objective function:  
 

2 2

1 1 2 2

1 2 1 2 3

2

3 3 4

2 3 4 3 4

4 ln exp exp 4 4 ln exp exp 5
1

( )
2

4 ln exp exp 5 4 ln exp e

x x x x
x x x x x

x

x x x
x x x x x

µ

µ µ
µ µ µ µ

θ

µ µ
µ µ µ

             
+ − + − − + + − − + − −             

                

       
+ + − − + − − + + − +       
        

=
2

4xp 4
x

µ

 
 
  
 

    
− −    

      

 

 
Let 

0 100µ = , and select initial point randomly. Solving by 

Algorithm 1, the reductions of objective function min ( )
k

xµθ  

are shown in Figure 1. 
From Figure 1, we can conclude that the unique 

solution to this AVE problem  can  be  obtained  after 102 

iterations, and the unique solution is 
* [1,1,1,1]Tx = . 

If we let 0 1µ = , and select initial point randomly, then 

after 2 iterations, the unique solution * [1,1,1,1]Tx =  can 

be obtained. 
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n=input('dimension of matrix A=')

rand('state',0);

A1=zeros(n,n);

for i=1:n

    for j=1:n

       if i==j

           A1(i,j)=500;

       elseif i>j 

           A1(i,j)=1+rand;

       else 

           A1(i,j)=0;

       end

    end

end

A=A1+(tril(A1,-1))'

b=(A-eye(n))*ones(n,1)
 

 
Figure 2. Generating data (A, b) by the Matlab scripts. 

 
 
 
Example 2  
 

Let A  be a matrix whose diagonal elements are 500 and 
the nondiagonal elements are chosen randomly from the 

interval [1, 2]  such that A  is symmetric. Let 

eIAb )( −=  where I  is the identity matrix of order n 

and e  is 1×n  vector whose elements are all equal to 

unity such that (1, 1, ,1)Tx = L is the exact solution 

(Noor et al., 2011a, b). 
Here the data (A, b) can be generated by Matlab scripts 

(Figure 2) and we set the random-number generator to 
the state of 0 so that the same data can be regenerated. 

Let 0 1µ = , and select initial point randomly. Numerical 

results of this problem are presented in Table 1.  
All the experiments were performed on Windows XP 

system running on a Hp540 laptop with Intel(R) Core(TM) 
2×1.8 GHz and 2 GB RAM, and the codes were written in 
Matlab 7.1. In all instances, the Algorithm 1 performs 
extremely well, and finally converges to an optimal 
solution of the AVE after few iterations.  
 
 
Conclusion  
 
We have proposed a new smooth method for solving the 
NP-hard absolute value equation Ax -|x| = b under the 
less stringent condition that the singular values of 

A exceed 1. The effectiveness of the algorithm is 
demonstrated by its ability to solve some randomly 
generated problems.  Smoothing Newton  method  is  two  

 
 
 
 
Table 1. Computational results by Algorithm 1. 
 

Dimension Iterations Dimension Iterations 

4 2 64 3 

8 2 128 3 

16 2 256 3 

32 2 512 3 
 
 
 

time faster than the iterative method proposed by Noor et 
al. (2011a, b). Possible future work may consist of 
investigating other optimization algorithm and improve-
ment of the proposed algorithm here. 
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