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Extension of a computational method for solving a special kind of singular system is the novelty of
this paper. These systems are called systems of Abel Volterra integral equations. This method is
based on the application of Legendre wavelets, as a basis functions for numerical solutions. Some
examples are presented to illustrate the efficiency and the simplicity of the method.
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INTRODUCTION

Mathematical modeling of many physical systems leads
to functional equations in various fields of physics and
engineering. In recent years some methods have been
used by many authors to obtain approximate solutions
(He, 1999; Biazar et al., 2003, 2009; Faraz et al., 2010;
Khan and Faraz, 2011). System of Volterra integral
equations arise in mathematical modeling of many
phenomena (Delves and Mohamed, 1988; Jerri, 1999;
Linz, 1985) and several methods have been proposed in
the literature to solve these systems. These systems
have been solved by Adomian decomposition method
(Biazar et al., 2003), homotopy perturbation method
(Biazar et al., 2009), variational iteration method (Biazar
and Ebrahimi, 2010) and radial basis function networks
(Golbabai et al., 2009).

In the present paper, special kind of singular systems
of Volterra integral equations, called systems of Abel
integral equations are studied. Historically, Abel is the
first person who had studied integral equations, during
the 1820 decade (Jerri, 1999; Linz, 1985). He obtained
the following equation, when he was generalizing the
tautochrone problem.

1
L‘\/“(idt . (1)

where ¢ ) is a known function and y (x) is an unknown
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function which could be determined. This equation is a
particular case of a linear Volterra integral equation of the
first kind. The kernel of Abel integral equations has weak
singularity and Abel integral equations are somewhat ill-
posed and any small changes in the measurement data
may cause unpredictable huge errors in the numerical
approximate solutions.

Some methods for solving the system of Abel integral
equations are known. The idea of the fractional calculus
has been used for a special kind of these systems
(Mandal et al., 1996), an operational matrix method
based on block-pulse functions for singular integral
equations has been introduced (Maleknejad and Salimi,
2008). In Pandey and Mandal (2010), Bernstein
polynomials have been used for numerical solutions of
systems of generalized Abel integral equations.

The method introduced in this paper consists of
reducing a system of Abel integral equations into a
system of algebraic equations, by expanding the
unknown functions, as a series in terms of Legendre
wavelets with unknown coefficients (Maleknejad and
Sohrabi, 2007; Mahmoudi, 2005; Yousefi, 2006; Biazar
and Ebrahimi, 2010). The general form of these systems
is considered as the following.

iF[j(x g (x),u, (x))+
”(u ()t (1)) @)
dt=f,(x),
Z [ T E=f,(x)
i=1,2,....n, m=1,2,...,
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0<x<1,

f.(x),i=1,2,...,n, are known functions.

where O<ea,,;<I, and also

This paper is organized as follows: Legendre wavelets
method is explained, applications of the method for
introduced systems are studied, numerical examples are
presented and conclusions are given, finally.

LEGENDRE WAVELETS METHOD

Wavelets constitute a family of functions constructed from
dilation and translation of a single function called the
mother wavelet (Daubeches, 1992; Christensen and
Christensen, 2004). When the dilation parameter a and

the translation parameter b, vary continuously the
following family of continuous wavelets will appear:

1 _
yzm(t):\a\‘zyz(i), a.bell, a=#0. (3)
a

Legendre wavelets are defined on the interval [0,1] as
follows:

v, =y (t:k n,m)=

£ -
Im+l2ip (2t r-on+r), e M
2 2 2
(4)

0, othemwise.

where n=1,2,...,2k_1, k is any positive integer, m is
the degree of Legendre polynomials, m =0,1,....M —1
and ¢ is the normalized time. P, (t) is the famous
Legendre polynomial of order m . These polynomials are
orthogonal with respect to the weight function w(z)=1.
The set of Legendre wavelets are an orthonormal set.

A function f (x)e L2[0,1] may be expanded as
follows:

F)=2 2 W), (5)
n=1 m=0
where ¢, =( f(x),w, (x) ) stands for the inner

product of f(x) and ¥, (x). Let's consider truncated
series in Equation 5, as the following.

25 p—1

FOOY Y ¥ (X)=C Y (x). (6)

n=1 m=0

where C and W (x) are 2" 7'M x1 matrices given by:
C :|:C10 2Crrsee s Cipy15C205C 015+ Copp

T
""CZ"‘IO""’CZ"“,MA] (7)
T
=[c1,c2,...,cM 3Coarat s ...,CZHM} ,
and
l//(x)=[ Wio()se e oW (), Wi (X) 5.
T
Vst (e oW 10 o¥i ) | (8)

Also, a function f(x,y)eLz[O,l]2 can be
approximated by:

f )l OKpky). (9)

Here the entries of the matrix K =[k; ; 1, k1, k1,

will be obtain by:
ki,j:(Wi(x)’(f (x,y),l//j(y)))’ (10)
i) =1,2,,25 7

The integration of the vector ¥ (x), defined in Equation
8, can be achieved as the following.

Igl//(t)dt=Pl//(x). (11)

where P isthe 25 M x2k 1y operational matrix for
integration (Razzaghi and Yousefi, 2001).

The following property of the product of two Legendre
wavelet vector functions is well known as:

y(Ow !l ()Y Yy(x). (12)

where Y is a given vector and Y is a



25 T x2% I matrix. This matrix is called the
operational matrix of product.

SOLUTION OF SYSTEMS OF ABEL VOLTERRA
INTEGRAL EQUATIONS

Here, two cases of these systems will be studied.

Case 1

Consider the system (Equation 2) with the limits 0 and
x for integral signs. To solve this system by Legendre

wavelets method, unknown functions,
u;(x), i=1,2,..,n are considered as a linear
combination of these wavelets as the following.
w; )0C T wx), i=1,2,...n. (13)
where
T

C, z[ci,l,ci,z,...,ci,M ,ci,Mﬂ,...,ci,zk_lMJ ,

i=1,2,..n

Other terms also will be considered as the following
general expansions:

fi)0F wx),

Fij (e (0)ett , (0)IX | (),

Gij(ul(t),uz(t),...,un(t)):ZAijktk, (14)
k=0

i=1,2,..n, j=12,..m

s=2kTpr 2k 41,

2k—1

where F; are the M X1 matrices and X ; ; are

the 2X71M x1 matrices with the entries which are in
terms of the components of the vectors C; for

i=1,240n, j=1,240.,m

By substituting Equations 13 and 14 into the system,
one gets:
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ijk

ZA
Fly(x)= ZX” (x)+zj0
—E&wwziwL (15)

Jj=1k=0

—ZXUI//()C)+ZZA”,CZ ),

Jj=1k=0

i=12,...n, s=2""M2"'M+1,....

6[1..
where A,;, and Zk "(X) can be determined by the
following formulas:

d*G(Cly(@)....Cop@))

Aijk(cl()""’Cn,ZHM): k‘ t=0° (16)
i=12,..,n,j=12,.m,k=0]1,..,s.
and
k
” (x)= j —dt
0 (x —1)%
Th+DOA-0,,) 4 m
Tk -a,;+2) a7
k =0,1,....s
Now let’s consider:
DA LZI @)=Y v,

k=0 (1 8)

Substitution of Equation 18 into the system (Equation 15),
leads to the following system:

Fly)=>(X] +y [ Jwx), i=1,2,...n, (19)
j=1

Multiplying l//T(x) in both sides of the system

dx a linear or non-

(Equation 19) and applying .[

linear system in terms of the elements of
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C,,i=1,2,..,n, wil be obtained.

Case 2

If in Equation 2, limits of integral are different from 0 and
x , then the formula (Equation 17) would not be
applicable, and another approach should be considered.

One can write the kernels as:

1
Dz/f @)Ky,
(x —1)% (20)
i=1,2,..,n, j=1,2,....m
k-1 k-1 ,
where K, ; are 2° "M x2" "M complex matrices

with the entries according to the Equation 10. In
applying Legendre wavelets method, obtained solutions
will be complex, because of complex entries of matrices

K,;, and the real parts of the solutions can be

considered as approximate solutions.
Since the truncated Legendre wavelets series are
approximate solutions of system (Equation 2), one has

an error function e(u;(x)) as follows:

2Ky
e(u;(x))=lu;(x)- z

n=1

CipV¥Wn(x)]|. (21)

If one set x = Xjs

be obtained. Therefore we can check the accuracy of the
method by using error functions.

where x;€ [0,1], the error values can

NUMERICAL EXAMPLES

To illustrate the method, some systems are considered
and solved by the proposed method.

Example 1

Consider the following system of Abel integral equations
on [0,1]:

D[ \/_u(t)ai‘+xj \/_v(t)ai‘ =f,(x).

(22)

: d+1-0)[ = () =F,00)
) %uc) +(1-x)| s 04

where
5 9
14x 2 16x 2 243(x —1)3
— _2 - @ @
Jit0)= 15 Vx 440
2 2 2
_81(x —1)3x° _27(x —1)3x°? 3 -1)Px
220 88 1’
3 3
56(x —1)*x’ 128(x —1)*x°
33 231
3 19 pZ
C32(x —1)*x ¢ +625x > 625x 7
77 1596 1596
The exact solutions are u(x)=x 2+1, and
v (x)=x>. This system is of the case 2. Let's write

the system (Equation 22) as the following.

——u@)dt+x | ———vt)dt

[
—x L%v O =f,x),

| [t ~[ ——u)d
o Lo
+(1-x) LWV Ot =f,x),

(=D F

(23)

Consider k=1, M =8, and

u@)iclywy, v () 0CTy ),

F10O0F] wx), F200)0 Flw(x),
2S10Afy @), x DALy,

T
x30AY v, I-x DAL wx),

1
==L OK .

X —t

1
v OKp ).

X —t

w@ydr 0Y [y (),

e



o u(LWM)|

u (exact )

(al)
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Figure 1. The exact and approximate solutions of Example 1 (a1 and b1).

v (t)dt OY |y (x),

Jo 7=
03[y —¢
X 1
loi=
1
lom=

Substituting into the system (Equation 23) and solving the
obtained system, the following results will be achieved.

u (t)dr 0Y 3T1//(x),

v (1)dt DY |y (x).

1,0 =1.332139718-0.00017122340331,

¢1,1 =0.2881733408+0.00033602006207 ,

1,2 =0.07495349421+0.00037788822891 ,
1,3 =0.0004166935511-0.000073486144761 ,
¢ 1,4 =0.00009264304313-0.00021445727761 ,
1,5 =—0.0001266940664 —0.000093269475531 ,
1,6 =—0.0001029232530+0.00001070354157 1,

¢1,7 =—0.0000079722934141-0.000019208377991,
€9,0 =0.2501175456-0.0013562381611,

¢ 7,1 =0.2595052996 —0.0009835260024 1,

€9, =0.1112783354+0.00027571745891,

€ 7,3 =0.01885257238+0.00066095535381,

€ 9,4 =0.0003527252537 +0.00026746852991 ,

¢ 7,5 =0.0002311584955-0.0000818497244301,

¢,6 =—0.0000632693604 —0.00011762348741 ,
¢,7 =—0.0001577272089—-0.000019085553021 .

Since entries of the matrices K, and K, are complex,
the real parts are considered as approximate solutions.

u (x)=-0.1059683526x 7 +0.0279973931x ©
+0.4092470195x ° —0.5281462460x *

+0.2415872910x ° +0.9532702993 x 2
+0.00157711934 x +0.9998653975,

v (x) =—2.096522496x * +7.127044981x 6
~9.334519464 x > +5.928096298x +

—0.9036584798 x > +0.2968255414x 2
—0.01824363652x +0.0002621496533.
Plots of the exact and approximate solutions are shown

in Figure 1, and plots of error functions are shown in
Figure 6.

Example 2

Consider the following linear system of Abel integral
equations, with the exact solutions u(x)=x, and

v(x) =\/; on [0,1] (Maleknejad and Salimi, 2008).
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———u(t)dt ==,

4v(x)—u(x)+.[ \/7

VEuto) W(v Ot =x (24)

¥4x3/2.
3

In Maleknejad and Salimi (2008), the authors obtained
Laplace transforms of this system, and then found
inversion of Laplace transform by operational matrices.

Let'stake k =1 and M =10, and such that:
T T
u@)UCryx), v )UC,w(x),

x0F y@), Jx =320 F yo,

10
wyde 1Y A1z )=y Ty o),

X 1
Iy \/(x—t)3 k=0

w@wydt 0% Ayz V2y=r Ty ),
f; a3 2

1

v ()dt [ ZA3Z,1/2(x)=Y3Ty/(x).
k=0

—y
S x
=
|
-~

Therefore, the following system will be obtained:

4c -cr+y" =-F",

(25)
c! —%c{ +Y] -y =F/.

Elements of vectors C; and C, are computed by

solving a linear system, with twenty equations and the
same number of unknowns, as follows:

¢ 5,0 =0.66666678324,
¢ 5,5 =-0.04258874862,
¢ 5,4 =—0.008652711337,
¢ 5,6 =—0.003351718010,
¢ 5,5 =0.001673003306,

¢ 5,1 =0.2309422413,
¢ 2,3 =0.01680244769,

¢ 2,5 =0.005161156387,
¢ 5,7 =0.002352618714,
¢ 9,0 =0.001429765418.

Therefore, the following approximate solutions will be
resulted:

u (x)=5.885144996x ° —26.84654734 x
+51.26379778x " —53.12871470x °
+32.39185155x ° —11.76755039x *
+2.458395282x * —0.2686523078 x *
+1.012477244 x —0.0001419708482,

v (x)=303.0097084 x * —1452.320553x

+2953.049126x " —3320.767151x °
+2258.593806x * —956.3816582x *

+251.5888474x > —40.83119833x 2
+5.012913708 x +0.04957533208.

Plots of the exact and approximate solutions are
presented in Figure 2. Error functions are plotted in
Figure 7.

Example 3

Consider the following non-linear system of Abel integral
equations:

W)+ *@))dt

© 1
() =2 ()|, o
x_

:x2_2x3+ 390625 x34/5+3125x24/5’
1573636 9576 (26)

v(x)—u(x)—j:\/%u(t)v(t)dt

With the exact solutions, u (x)=x 2 and v(x)=x".
Applying the Legendre wavelets method for k =1 and
M =6 results in the following.

c1,0=0.3333333332, ¢, =0.2886751346,

c1,2 =0.07453559914, ¢ 3=-0.1593029682x10 ",

c1,4=-03468681244x10 2, ¢ 5=0.1888710861x107"",
€,0=02499999998, ¢, | =0.2598076210,
€9, =0.1118033988, ¢ 3=0.0188982236,

¢,4=-0.1116409590x10 ", ¢, §=-0.2114302164x10 """

Therefore, one gets the following approximate solutions:
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Figure 2. The exact and approximate solutions of Example 2 (a2 and b2).

u (x ) =0.1578564606x10 8 x 3 —0.4019253820x10 Sx +
+0.2810653885x10 ~8x 3 +0.9999999981 x 2
+0.1508736445x10 8 x —0.4641165416x10~,

v (x)=—0.1767111437x10 "8 > +0.2073318451x10 Sx *

+0.999999998 1x > +0.458286971x10 7 x 2
+0.1405246551x10 " x —0.18x10 .

Plots of the exact and approximate solutions are plotted
in Figure 3 and error functions are shown in Figure 8.

Example 4

Consider the following non-linear system with the exact

solutions u (x ) =x 3 _1andv (x)=x.

2 * 1 3 _ 6 3
u (X)+J.() WV (f)df =x"-2x
32 sn
——x7" 4],
5 (27)
X 1 2 _ 32768 23/4
v(x)—J.O 3/3: u@)y “@)d =x —Mx
+@x“’4,03x31.
231

Let’s consider k=1 and M =5. Entries of the vectors
C, and C, can be computed as the following.

¢1,0 =—-0.7500000001,
c1,2=0.1118033985,

¢ 1,1 =0.2598076212,

c1,3=0.011889822359,
c1,4 =0.1532165690x10 ™%, ¢, o=0.4999999999,
¢, =0.2886751347, €. =—0.1136139673x10 ",

¢2,3=-0.1068365696x10 1%, ¢, 4, =-03978712670x10 """,
The approximate solutions are:

u (x)=0.3217547949x107" x * +0.9999999324 x 3
+0.4136847363%107" x 2 —0.5692994140x10 3 x —1,

v (x) =—0.8355296607x10x * +0.1105733333x10 8 3
—0.3786925712x107 x 2 +x —0.3717337006x10~°.

Plots of the exact and approximate solutions are shown

in Figure 4 and plots of error functions are shown in
Figure 9.

Example 5

Consider the following system of Abel Volterra integral of
the first kind:
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uiexact) © u(L.WM)l viexact) © V(LWM]I

(a3) (b3)

Figure 3. The exact and approximate solutions of Example 3 (a3 and b3).

T ¥ T = T ¥ T

02 04 04 03

—_]

viexact) ¢ vlfLWM]l

u(exact) © u{LWM}] [

(a4 ) (b4)

Figure 4. The exact and approximate solutions of Example 4 (a4 and b4).

J'X;(u(t)w(t))dt e+, With the exact solutions , (. _ ¢ Yerf(\/x) and
0 Jx —t 2 (28) \/7 —

IX ,—1 (u@)—2v @))dt =e* —x =3, 0<x<I. vi(x) = 1+ x

0 .x_t ﬂ' \/7
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10

v (exact) © v{LW]‘-.-'[]ll

(b5}

Figure 5. The exact and approximate solutions of Example 5 (a5 and b5).

0.0025 ~
0.0020 + @

00015 +

[—et®) © su®)]

Figure 6. Plots of error functions of Example 1.

By applying the Legendre wavelets approach for k=1
and M =10, the following solutions would be obtained.

u (x) =226.0149470x ° —1063.703653x 8
+2122.157100x 7 —02339.491704 x ©
+1558.306153x ° —645.2812734x *

+165.6773181x > —25.68774288x 2
+3.275655345x +0.03104332440,

v (x)=—42845.65844x ° +198904.9387 x 8
~389906.1701x ' +419870.7757x ©
—270634.2637x > +106685.4261x *

~25219.19223 x > +3360.406582x 2
~223.3096447 x +6.535131213.

Plots of the exact and approximate solutions and error
functions are shown in Figures 5 and 10.

Conclusion

In this paper, the Legendre wavelets method is used to
find approximate solutions of systems of Abel Volterra
integral equations. It is observed that the solution
obtained by this method converges rapidly to an exact
solution and plots confirm it. Research for finding more
applications of this method and other orthogonal basis
functions is one of the research fieldsin our research
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Figure 7. Plots of error functions of Example 2.

Figure 9. Plots of error functions of Example 4.

Figure 10. Plots of error functions of Example 5.

Figure 8. Plots of error functions of Example 3. group. The computations associated with examples are



performed using the package Maple 13.
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