

International Journal of the Physical Sciences Vol. 5(8), pp. 1290-1295, 4 August, 2010
Available online at http://www.academicjournals.org/ijps
ISSN 1992 - 1950 ©2010 Academic Journals

Full Length Research Paper

Improving multiplication and reminder using
implementation based on word and index

Malihe Danesh, Hossein Shirgahi* and Najmeh Danesh

Young Researchers Club, Islamic Azad University, Jouybar Branch, Jouybar, Iran.

Accepted 12 August, 2010

Asynchronous cryptography is one of the most widely used cryptographic algorithms. Much research
has been done to find other applications of this cryptography method. Modular exponentiation is one of
the primitive operations in these algorithms. Since we need to perform multiplication, square and
modular division, most aspects of these studies were based on optimizing each of these algorithms.
Since access to faster software or hardware techniques was the objective of these studies, after
studying optimized implementation methods of multiplication and division, we tried to take a step
toward the application of methods of software implementation of some examples to decrease
implementation time and increase the efficiency of algorithms of this type in this paper.

Key words: Reduction division, asynchronous cryptography, modular multiplication, Karatsuba-Ofman
multiplication.

INTRODUCTION

Modular exponentiation is one of the important and
primitive operations performed in the algorithms of
asynchronous cryptography. This operation is used in
most algorithms of asynchronous cryptography such as
RSA, diffie-Hellman key exchange, ElGamal signature
design and DSS algorithm. Different software and
hardware techniques were used for better implementation
considering the importance of modular exponentiation.
What is important for the software implementation of the
algorithms of modular exponentiation is modular
multiplication which is performed in each exponentiation
algorithm. We need to implement a modular multiplication
to calculate Me (mod n). Three ways of calculating
modular multiplication are they are represented by R:
=a.b (mod n) and a, b and n are k bit integers are as
follows:

1. Multiplication and reduction: In this method at first the
multiplication of a and b is performed separately and then
reduction by dividing the product by n.
2. Blackley method: The stages of multiplication and

*Corresponding author. E-mail: hossein.shirgahi@gmail.com.

reduction are combined in this method (Blakley, 1983).
3. Montgomery method: This algorithm represents
residue class to modulus n and uses residue account
(Montgomery, 1985).

In the three methods mentioned above, the operations of
modular reduction and multiplication are needed. Consi-
dering the importance of the operations of cryptography
and decryption, much effort was done in accelerating the
algorithms of modular reduction and multiplication and in
decreasing their required time especially in big numbers.
Next section deals with some of these important
algorithms. Then we present our recommended methods
on multiplication and remainder algorithms to increase
the efficiency of some of these algorithms and compare
the results of their implementation with previous methods.
Finally we summarize the obtained results.

RELEVANT WORK

Several methods were offered for improving remainder
and multiplication algorithms. Each method aims to
increase the speed of these algorithms by presenting
software and hardware implementations (Barrett, 1986;

Figure 1. Karatsuba-Ofman algirthm.

Laurichesse and Blain, 1991). If k represents number of
bits of mentioned numbers, then standard multiplication
algorithm with time order O(k2) in (Sloan, 1985),
Karatsubu-Ofman with time order O(K1.58) in (Knuth,
1981; Bewick, 1994; Nedjah and Mourelle, 2003) and
multiplication algorithm based on FFT with time order
O(klogk) in (Shindler, 1997; Zuras, 1993; Dordevic et al.
2002) are among the commonest and most efficient
which are used in hardware implementation. Karatsuba-
Ofman multiplication algorithm is the best option for
hardware implementation.

Unreductible and reduction division are among the
most efficient reduction algorithms which are used in
hardware and software implementation and has the time
order O(kn) , which k is the number of bits (Booth, 1951;
Brickell, 1983; Brickell et al. 1992). Since the work done
in this paper is based on the software implementation of
Karatsuba-Ofman algorithm in multiplication and
reduction division algorithm in modulation, will explained
briefly.

Karatsuba-Ofman

This algorithm uses a method for performing multipli-
cation which needs less O(k

2
) in bit action. The method

was proposed by two mathematicians named Karatsuba
and Ofman in 1962. The method is explained briefly here.
At first the two numbers of a and b are divided equally:

a: 2ha1+a0, b: 2hb1+b0

Multiplication algorithm splits them into parts of b1 b0 a1
a0. We need a three k-bit multiplication and adding the
results to calculate the multiplication of a by b. Figure 1
pseudocode represents the operations existing in this
algorithm clearly.

The performance time is 3t (k/2) + �k, where �k
represents the operations of addition, multiplication and
shift in this algorithm. Solving this it was found out that
the complexity of this algorithm is O(k log

2
3) = O(k1.58).

Danesh et al. 1291

Karatsuba-Ofman algorithm is faster in complexity than
standard one. There is a load thanks to the recursive
identity of the algorithm. Since access to faster speed is
the objective, we plan to increase the efficiency of the
above algorithm by decreasing the computational load.

Reduction division algorithm

Following the multiplication, there is the step of division
by which the remainder is computed. Since we need the
value of remainder we can simplify the steps of division
algorithm to speed up the process. The division step can
be performed by one of division algorithms considering
the dividend t, divisor n and remainder R so that they can
use shift and subtraction n from t alternatively until the
remainder k is obtained in the range 0 � R � n. Moreover,
a negative remainder may be obtained after subtraction.
Reduction division algorithm is an example of the
algorithms used while confronting a negative remainder.

In the existing procedure in pseudocode, Figure 1
balances the operands t and n on the left at first. Since t,
a 2k-bit number and n, a k-bit number, balancing on the
left causes them to be shifted to left that means
computation starts with 2kn.

We consider Ri as the remainder in ith step of
algorithm. We consider R equals t(R0 = t). Then the
shifted value of n is subtracted from t to obtain R1. If R1
is a positive number or zero, we go to the next step;
otherwise the remainder is retrieved to its previous value.

Reduction division algorithm performs k subtractions to
reduce 2k-bit t to k-bit n. This causes algorithm,
especially for large integers to take long. As its clear, the
complexity of this algorithm is O (kn).

METHODS

Proposed method in multiplication

Here we intend to use a method of software imple-mentation of
Karatsubofman algorithm to improve its efficiency in multiplication.
In fact we plan to decrease the effect of recursive load in the
algorithm to increase its speed and gain access to better operation
time in large integers. Our proposed method is based on
decreasing the number of recursive routines in which we used the
property based on word instead of bit. All operations are performed
based on bit and in each step the bit length of the number is
decreased to half and the recursive procedure is recalled.

Our proposed method on Karatsub-Ofman algorithm is that we
converted numbers to words with the same length instead of bit
division and halving operation is performed word by word so that in
each step the number of desired words is halved and this trend
continues to reach a word in both numbers. In other words we
evaluate the input parameters of the recursive algorithm of KORMA
based on word length instead of bit length and perform division
based on word. As a result, the number of recursive procedures
decreases until the algorithm ends. Also, this method was
implemented with words of different lengths. The results obtained
are shown next section. If the length of the desired word is a
multiple of bit length of a and b, we add some zeros to the above

1292 Int. J. Phys. Sci.

Table 1. Time of using word based method in multiplying two N bit numbers.

Time(ms) Bit based Byte based Short word based Word based
N=32 1734 21.2 4.9 0.3
N=64 6542 97.1 22.2 4.8

N=128 25967 396.2 100.1 26.3
N=256 105621 1628.4 430.7 116.2
N=512 364333 6633.3 1621.5 412.7

N=1024 1136652 27877.2 5843.4 1393.5

Figure 2. Reduction division algorithm.

numbers according to the bit length and apply the algorithm.

To compare the proposed method with the one based on bit, we
performed the software implementation of the multiplication
algorithm and implemented it in a system with specifications 512
MB RAM, CPU Pentium (���), 800 MHz using C++.

THE PROPOSED METHOD IN REMAINDER

In this section, we tried to increase efficiency by speeding up the
reduction division algorithm followed by a decrease in the operation
time. For this reason, we used the property based on word in this
method and used a word by word reduction instead of bit by bit
reduction. This is how the proposed method works: at first we
converted the dividend and divisor into words with fixed length and
applied the algorithm to them. In the second step in the algorithm of
Figure 2 we shift the divisor words by k instead of bit shifting. Then
we used word by word reduction in iteration ring instead of bit by bit
reduction.

Finally we shift the divisor words one unit into right side. As a
result the number of reduction steps is based on the difference of
the words of the two numbers which is much less than the
differenced in their bits. Another improvement on this algorithm, we
used an index instead of transfer which had a great effect on the
decrease in the time needed for implementing the algorithm. Next
section deals with the results obtained from the synchronous
implementation of these two methods on the efficiency of the
reduction division algorithm.

RESULTS

Multiplication

The results are shown in Table 1. The lines of the table
represent number of bits of the desired integers and
columns represent length of words, so that the first
column which is based on bit, equals the main Karatsub-
Ofman algorithm and other columns are based on bite,
short word and word respectively. The values in the table
show the time needed for the multiplication of the two
numbers in second. This method had a suitable effect on
the operation time of the above algorithm. In other words
the increase in word size in numbers with a fixed bit
length decreased the operation time of the algorithm
remarkably. This decrease is more remarkable in
numbers with bit length over 250 bits.

In Figure 3, we studied the effect of increase in word
size with numbers with fixed bit length that time in word
based method in multiplying two N bit numbers is better
than other methods. Since the time changes of program
implementation is very much for numbers with different
bit length especially for larger integers, we used
logarithmic representation in the vertical axis. The
efficiency improves in an exponential way as the number
of bits increases which shows a considerable improve-
ment of the proposed method. The improvement in the
implementation based on 32 bit words is at least 102
which are shown in Figure 4.

Remainder

The results obtained from studying the time of performing
software implementation of the above proposed method
on reduction division algorithm are shown in Table 2. We
used the same system in the previous section. As you
can see in Table 2 the operation time of the algorithm has
decreased compared with the original algorithm. The
amount of increase had more changes as the word length
increases. The effect based on word on the numbers with
bit length is more remarkable.

The diagram of the results is shown in Figure 5. The
efficiency of the proposed method improves as the
number of bits of words increases that time is ����� on

Danesh et al. 1293

Figure 3. The effect of increasing word size in numbers with a fixed length bit.

Figure 4. Improvement rate in proposed method per 32-bit word multiplication.

Table 2. Time of	method based on word and using Index in calculated the remaining.

Based on word Based on short word Based on bite Based on bit Time(ms)
0.0212 0.027 0.036 0.185 N=32
0.0475 0.0725 0.1125 0.69 N=64
0.1512 0.2425 0.4 2.67 N=128
0.3931 0.83 1.48 7.15 N=256
1.104 3.08 5.4 21.4 N=512
3.3377 7.2680 17.494 67.223 N=1024

1294 Int. J. Phys. Sci.

Figure 5. Effect of increasing word size and using index on numbers with fixed length bit.

Figure 6. Improvement rate in proposed method per 32-bit word in remaining operation.

word method and using index in calculating the remaining
is efficient. This is more obvious in 32 bit words which are
shown in Figure 6. The efficiency is more than the
original algorithm in numbers with any bit length.

Conclusion

After studying examples of the most efficient methods of
remainder and multiplication operations used in asyn-
chronous cryptography algorithms, actions were taken to

improve the efficiency of some of them. Two methods
based on word and index was used.

The results shows the operation time of Karatsubofman
algorithms in 32 bit words decreased at least 10-3 times
as compared to traditional methods and the operation
time of reduction division algorithms for computing the
remainder decreased at least with coefficient 0.1 in the
proportion of older algorithms. In fact when the bit length
of the word increased in multiplication the increased
improvement was exponential and at least 10 times
more.

REFERENCES

Barrett P (1986). Implementating the Rivest, Shamir and Aldham public-

key encryption algorithm on standard digital signal processor,
Proceedings of CRYPTO'86, Lecture Notes Comput. Sci. Springer-
Verlag, 263: 311-323.

Bewick GW (1994). Fast multiplication algorithms and implementation,
Ph. D. Thesis, Department of Electrical Engineering, Stanford
University, United States of America.

Blakley GR (1983). A Computer Algorithm for the Product AB Modulo
M, IEEE Trans. Comput., 32(5): 497-500.

Booth A (1951). A signed binary multiplication technique, Quarterly J.
Mechanics Appl. Maths. pp. 236-240.

Brickell EF (1983). A Fast Modular multiplication Algorithm with
Application to Two key Cryptography, in Advances in Cryptology,
Proc. Crypto, New York, ’86: 51-60.

Brickell EF, Gordon DM, McCurley KS, Wilson DB (1992). Fast
Exponentiation with Precomputation, Proc. Eurocrypt, Springer,
92(658): 200-207.

Dordevic G, Unkasevie T, Markovic M (2002). Optimization of Modular
Reduction Procedure in RSA Algorithm Implementation on Assembler
of TMS320C54x Signal Processors, Proc. 14th Int. Conf. Digital
Signal Processing, pp. 811-814.

Danesh et al. 1295

Knuth DE (1981). The art of computer programming: seminumerical

algorithms, vol 2, 2nd Edition, Addison-Wesley, Reading, Mass.
Laurichesse D, Blain L (1991). Optimizing implementation of RSA

cryptosystem, comput. Secure, May, 10(3): 263-267.
Montgomery PL (1985). Modular multiplication without trial division,

Math. Comput., 44: 519-521.
Nedjah N, Mourelle LM (2003). Hardware simulation model suitable for

recursive computations: Karatsuba-Ofman’s multiplication algorithm,
Proceedings of ACS/IEEE International Conference on Computer
Systems and Applications, Tunis, Tunisia, July.

Shindler V (1997). High-speed RSA hardware based on low-power
piplined logic, Ph. D. Thesis, Institut für Angewandte Informations-
verarbeitungund Kommunikationstechnologie, Technishe Universität
Graz, January.

Sloan KR (1985). Comments on ‘A Computer Algorithm for Calculating
the Product AB Modulo M’, IEEE Trans. Comput., March, C-34(3):
290-292.

Zuras D (1993). On squaring and multiplying large integers, In
Proceedings of International Symposium on Computer Arithmetic,
IEEE Comput. Society Press, pp. 260-271.

