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Asynchronous cryptography is one of the most widely used cryptographic algorithms. Much research 
has been done to find other applications of this cryptography method. Modular exponentiation is one of 
the primitive operations in these algorithms. Since we need to perform multiplication, square and 
modular division, most aspects of these studies were based on optimizing each of these algorithms. 
Since access to faster software or hardware techniques was the objective of these studies, after 
studying optimized implementation methods of multiplication and division, we tried to take a step 
toward the application of methods of software implementation of some examples to decrease 
implementation time and increase the efficiency of algorithms of this type in this paper. 
 
Key words: Reduction division, asynchronous cryptography, modular multiplication, Karatsuba-Ofman 
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INTRODUCTION 
 
Modular exponentiation is one of the important and 
primitive operations performed in the algorithms of 
asynchronous cryptography. This operation is used in 
most algorithms of asynchronous cryptography such as 
RSA, diffie-Hellman key exchange, ElGamal signature 
design and DSS algorithm. Different software and 
hardware techniques were used for better implementation 
considering the importance of modular exponentiation. 
What is important for the software implementation of the 
algorithms of modular exponentiation is modular 
multiplication which is performed in each exponentiation 
algorithm. We need to implement a modular multiplication 
to calculate Me (mod n). Three ways of calculating 
modular multiplication are they are represented by R: 
=a.b (mod n) and a, b and n are k bit integers are as 
follows: 
 
1. Multiplication and reduction: In this method at first the 
multiplication of a and b is performed separately and then 
reduction by dividing the product by n. 
2. Blackley  method:  The  stages  of   multiplication   and 
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reduction are combined in this method (Blakley, 1983).  
3. Montgomery method: This algorithm represents 
residue class to modulus n and uses residue account 
(Montgomery, 1985). 
 
In the three methods mentioned above, the operations of 
modular reduction and multiplication are needed. Consi-
dering the importance of the operations of cryptography 
and decryption, much effort was done in accelerating the 
algorithms of modular reduction and multiplication and in 
decreasing their required time especially in big numbers. 
Next section deals with some of these important 
algorithms. Then we present our recommended methods 
on multiplication and remainder algorithms to increase 
the efficiency of some of these algorithms and compare 
the results of their implementation with previous methods. 
Finally we summarize the obtained results. 
 
 
RELEVANT WORK 
 
Several methods were offered for improving remainder 
and multiplication algorithms. Each method aims to 
increase the speed of these algorithms by presenting 
software and  hardware  implementations  (Barrett,  1986;   



 

 
 
 
 

 
 
Figure 1. Karatsuba-Ofman algirthm. 

 
 
 
Laurichesse and Blain, 1991). If k represents number of 
bits of mentioned numbers, then standard multiplication 
algorithm with time order O(k2) in (Sloan, 1985), 
Karatsubu-Ofman with time order O(K1.58) in (Knuth,  
1981; Bewick, 1994; Nedjah and Mourelle, 2003) and 
multiplication algorithm based on FFT with time order 
O(klogk) in (Shindler, 1997; Zuras, 1993; Dordevic et al. 
2002) are among the commonest and most efficient  
which are used in hardware implementation. Karatsuba-
Ofman multiplication algorithm is the best option for 
hardware implementation.  

Unreductible and reduction division are among the 
most efficient reduction algorithms which are used in 
hardware and software implementation and has the time 
order O(kn) , which k is the number of bits (Booth, 1951; 
Brickell, 1983; Brickell et al. 1992). Since the work done 
in this paper is based on the software implementation of 
Karatsuba-Ofman algorithm in multiplication and 
reduction division algorithm in modulation, will explained 
briefly. 
 
 
Karatsuba-Ofman 
 
This algorithm uses a method for performing multipli-
cation which needs less O(k

2
) in bit action. The method 

was proposed by two mathematicians named Karatsuba 
and Ofman in 1962. The method is explained briefly here. 
At first the two numbers of a and b are divided equally: 
 
a: 2ha1+a0,               b: 2hb1+b0 
 
Multiplication algorithm splits them into parts of b1 b0 a1 
a0. We need a three k-bit multiplication and adding the 
results to calculate the multiplication of a by b. Figure 1 
pseudocode represents the operations existing in this 
algorithm clearly. 

The performance time is 3t (k/2) + �k, where �k 
represents the operations of addition, multiplication and 
shift in this algorithm. Solving this it was found out that 
the complexity of this algorithm is O(k log

2
3) = O(k1.58).  
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Karatsuba-Ofman algorithm is faster in complexity than 
standard one. There is a load thanks to the recursive 
identity of the algorithm. Since access to faster speed is 
the objective, we plan to increase the efficiency of the 
above algorithm by decreasing the computational load. 
 
 
Reduction division algorithm 
 
Following the multiplication, there is the step of division 
by which the remainder is computed. Since we need the 
value of remainder we can simplify the steps of division 
algorithm to speed up the process. The division step can 
be performed by one of division algorithms considering 
the dividend t, divisor n and remainder R so that they can 
use shift and subtraction n from t alternatively until the 
remainder k is obtained in the range 0 � R � n. Moreover, 
a negative remainder may be obtained after subtraction. 
Reduction division algorithm is an example of the 
algorithms used while confronting a negative remainder.  

In the existing procedure in pseudocode, Figure 1 
balances the operands t and n on the left at first. Since t, 
a 2k-bit number and n, a k-bit number, balancing on the 
left causes them to be shifted to left that means 
computation starts with 2kn. 

We consider Ri as the remainder in ith step of 
algorithm. We consider R equals t(R0 = t). Then the 
shifted value of n is subtracted from t to obtain R1. If R1 
is a positive number or zero, we go to the next step; 
otherwise the remainder is retrieved to its previous value. 

Reduction division algorithm performs k subtractions to 
reduce 2k-bit t to k-bit n. This causes algorithm, 
especially for large integers to take long. As its clear, the 
complexity of this algorithm is O (kn). 
 
 
METHODS 
 
Proposed method in multiplication 
 
Here we intend to use a method of software imple-mentation of 
Karatsubofman algorithm to improve its efficiency in multiplication. 
In fact we plan to decrease the effect of recursive load in the 
algorithm to increase its speed and gain access to better operation 
time in large integers. Our proposed method is based on 
decreasing the number of recursive routines in which we used the 
property based on word instead of bit. All operations are performed 
based on bit and in each step the bit length of the number is 
decreased to half and the recursive procedure is recalled. 

Our proposed method on Karatsub-Ofman algorithm is that we 
converted numbers to words with the same length instead of bit 
division and halving operation is performed word by word so that in 
each step the number of desired words is halved and this trend 
continues to reach a word in both numbers. In other words we 
evaluate the input parameters of the recursive algorithm of KORMA 
based on word length instead of bit length and perform division 
based on word. As a result, the number of recursive procedures 
decreases until the algorithm ends. Also, this method was 
implemented with words of different lengths. The results obtained 
are shown next section. If the length of the desired word is a 
multiple of bit length of a and b, we add  some  zeros  to  the  above  
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Table 1. Time of using word based method in multiplying two N bit numbers. 
 

Time(ms) Bit based Byte based Short word based Word based 
N=32 1734 21.2 4.9 0.3 
N=64 6542 97.1 22.2 4.8 

N=128 25967 396.2 100.1 26.3 
N=256 105621 1628.4 430.7 116.2 
N=512 364333 6633.3 1621.5 412.7 

N=1024 1136652 27877.2 5843.4 1393.5 
 
 
 

 
 
Figure 2. Reduction division algorithm. 

 
 
 
numbers according to the bit length and apply the algorithm. 

To compare the proposed method with the one based on bit, we 
performed the software implementation of the multiplication 
algorithm and implemented it in a system with specifications 512 
MB RAM, CPU Pentium (���), 800 MHz using C++. 
 
 
THE PROPOSED METHOD IN REMAINDER 
 
In this section, we tried to increase efficiency by speeding up the 
reduction division algorithm followed by a decrease in the operation 
time. For this reason, we used the property based on word in this 
method and used a word by word reduction instead of bit by bit 
reduction. This is how the proposed method works: at first we 
converted the dividend and divisor into words with fixed length and 
applied the algorithm to them. In the second step in the algorithm of 
Figure 2 we shift the divisor words by k instead of bit shifting. Then 
we used word by word reduction in iteration ring instead of bit by bit 
reduction.  

Finally we shift the divisor words one unit into right side. As a 
result the number of reduction steps is based on the difference of 
the words of the two numbers which is much less than the 
differenced in their bits. Another improvement on this algorithm, we 
used an index instead of transfer which had a great effect on the 
decrease in the time needed for implementing the algorithm. Next 
section deals with the results obtained from the synchronous 
implementation of these two methods on the efficiency of the 
reduction division algorithm. 

RESULTS 
 
Multiplication 
 
The results are shown in Table 1. The lines of the table 
represent number of bits of the desired integers and 
columns represent length of words, so that the first 
column which is based on bit, equals the main Karatsub-
Ofman algorithm and other columns are based on bite, 
short word and word respectively. The values in the table 
show the time needed for the multiplication of the two 
numbers in second. This method had a suitable effect on 
the operation time of the above algorithm. In other words 
the increase in word size in numbers with a fixed bit 
length decreased the operation time of the algorithm 
remarkably. This decrease is more remarkable in 
numbers with bit length over 250 bits. 

In Figure 3, we studied the effect of increase in word 
size with numbers with fixed bit length that time in word 
based method in multiplying two N bit numbers is better 
than other methods. Since the time changes of program 
implementation is very much for numbers with different 
bit length especially for larger integers, we used 
logarithmic representation in the vertical axis. The 
efficiency improves in an exponential way as the number 
of bits increases which shows a considerable improve-
ment of the proposed method. The improvement in the 
implementation based on 32 bit words is at least 102 
which are shown in Figure 4. 
 
 
Remainder 
 
The results obtained from studying the time of performing 
software implementation of the above proposed method 
on reduction division algorithm are shown in Table 2. We 
used the same system in the previous section. As you 
can see in Table 2 the operation time of the algorithm has 
decreased compared with the original algorithm. The 
amount of increase had more changes as the word length 
increases. The effect based on word on the numbers with 
bit length is more remarkable. 

The diagram of the results is shown in Figure 5. The 
efficiency of the proposed method improves as the 
number of bits of words increases that time  is  �����  on  
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Figure 3. The effect of increasing word size in numbers with a fixed length bit. 

 
 
 

 
 
Figure 4. Improvement rate in proposed method per 32-bit word multiplication. 

 
 
 

Table 2. Time of	method based on word and using Index in calculated the remaining. 
 

Based on word Based on short word Based on bite Based on bit Time(ms) 
0.0212 0.027 0.036 0.185 N=32 
0.0475 0.0725 0.1125 0.69 N=64 
0.1512 0.2425 0.4 2.67 N=128 
0.3931 0.83 1.48 7.15 N=256 
1.104 3.08 5.4 21.4 N=512 
3.3377 7.2680 17.494 67.223 N=1024 
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Figure 5. Effect of increasing word size and using index on numbers with fixed length bit. 

 
 

 
 
Figure 6. Improvement rate in proposed method per 32-bit word in remaining operation. 

 
 
 
word method and using index in calculating the remaining 
is efficient. This is more obvious in 32 bit words which are 
shown in Figure 6. The efficiency is more than the 
original algorithm in numbers with any bit length. 
 
 
Conclusion 
 
After studying examples of the most efficient methods of 
remainder and multiplication operations used in asyn-
chronous cryptography algorithms, actions were taken  to 

improve the efficiency of some of them. Two methods 
based on word and index was used.  

The results shows the operation time of Karatsubofman 
algorithms in 32 bit words decreased at least 10-3 times 
as compared to traditional methods and the operation 
time of reduction division algorithms for computing the 
remainder decreased at least with coefficient 0.1 in the 
proportion of older algorithms. In fact when the bit length 
of the word increased in multiplication the increased 
improvement was exponential and at least 10 times 
more. 
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