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The covariance transformation used in earlier theoretical studies of turbulent-flame and isothermal-
front propagation is defined and mathematically derived. This transformation provides the covariance
associated with fluctuations of a turbulent scalar or vector-component variable in terms of the
statistical properties of another fluctuating scalar or vector-component variable when the Fourier
transforms of the two variables in transverse-wave humber and frequency space are linearly dependent.
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INTRODUCTION

The potential for greatly enhanced combustion rates on
one hand and safety concerns related to fire spread on
the other have sustained much interest in an improved
understanding of the dynamics of turbulent premixed
combustion. To this end, models based on consideration
of the turbulent premixed flame as an ensemble of
wrinkled laminar flamelets have been useful in providing
for predictions of the mean burning-rate as well as
possible influences of turbulent-flame dynamics on the
flow-field properties upstream and downstream from the
flame (Williams, 1985). When attention is restricted to
reactant flows having large overall chemical activation
energies and low turbulence intensities, a Clavin-Williams
quasi-planar laminar-flamelet structure may be assumed,
providing for simplified solutions of the governing flow-
field conservation equations and an associated evolution
equation describing the flamelet dynamics (Clavin and
Williams, 1982; Pelce and Clavin, 1982; Clavin and
Garcia-Ybarra, 1983). Further mathematical formulation
leading to solutions in terms of statistical properties of the
turbulence far upstream from the flame has been useful
for predicting burning speeds as well as the extent of
turbulence modification near the flame, for conditions of
relatively low chemical heat release (such that the
laminar flamelet is intrinsically stable for all wave
numbers characteristic of the excitation turbulence far
upstream) (Aldredge, 1990; Aldredge and Williams,
1991). This formulation has employed the use of
covariance transformations introduced in the first of these

two referenced studies and used in a more recent study
of isothermal-front propagation (Aldredge, 2006) as well.
These covariance transformations are defined and
derived in the following section.

Formulation and derivation

Here, a general derivation of the covariance transform-
ation theorem used in earlier theoretical analysis of
turbulent-flame  and  isothermal-front  propagation
(Aldredge, 1990; Aldredge and Williams, 1991; Aldredge,
2006) is presented. The covariance transformation
provides the covariance associated with fluctuations
y(x,y,t) of a turbulent scalar or vector-component
variable in terms of the statistical properties of another
fluctuating scalar or vector-component variable 6(x.y.r)
when the Fourier transforms of y and ¢ are linearly
dependent. Specifically, if a spectral transfer function
O(x.k,w) is known, such that

3{y (x.y.1)} =0(x.k, ) 3{O(x,y.1)} (1)
then
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where ( ) denotes the ensemble average of its argument
and S{ ]} represents the triple Fourier transform in
transverse-wavenumber k and frequency o space, as
defined by
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It is assumed that the fluctuations &(x,y,r) and w(x.y.t)
both exhibit stationarity and homogeneity in the
transverse coordinate plane y (but not necessarily along
the axial coordinate directionx). More generally,
considering ensemble averages involving the product of
two different scalar or vector-component fluctuations ,
and y, , we have
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where
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and the superscript = signifies that the complex
conjugate is taken. We will now prove Eq. (4) defining the
general form of the covariance transformation theorem,
with the first relation of Eq. (2) representing one of two
special cases.

Application of the inverse Fourier-transform
operator37'{ }, as defined by the second relation in
Equation (3), to Equation (1) results in the following well-
known convolution theorem.
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where q(x.y,r)=3"{Q} . Hence, one has
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which, due to the assumed conditions of turbulence
stationarity and transverse homogeneity, becomes;
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dr,dn,dz,
( (8)
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Upon introduction of the new variables m=n,-n, and
r=1,-71,, we then have
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Since it can be easily shown that
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by substitution of integral expressions for ¢,=3"{0,}
and ¢,=5"{Q,}, according to the second relation of
Equation (3), and use of the properties of the well known
Dirac delta function, ¢, , defined here by
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Therefore, Eq. (9) becomes
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which is equivalent to Eq. (4) since
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The special case of Eq. (2) relating the autocorrelations
(v*) and (¢*) follows directly from the more general form
in Eq. (4), after elimination of the subscripts and use of
the identity ||’ =

Lastly, we derive the covariance transformation giving
(v*) when the spectral transfer function is a vector

Q=(Q,.0,) in transverse wavenumber space such that;
Hy(rny.)}=Q(xk.w)-3{8(x.y.1)} . (14)

In this case one has [c.f., Eq. (6)]
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and consequently
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After introducing the new variables m=n,-n, and
r=1,—7,, We then obtain
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and then [c.f., Eq. (10)]
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Finally, this result is equivalent to
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for the case where

Hy(xy.0}=0,(xk.0)3{8, (x.y.1)}

(20)
+0, (x.k,0)3{6, (x.y.1)}

is stipulated [c.f., Eq. (14)]. Extending the theorem to the
case where the Fourier transform of y(x,y,z) depends on

an arbitrary number J of spectral-field components, is
stipulated [c.f., Eq. (14)]. Extending the theorem to the
case where the Fourier transform of y(x,y,r) depends on
an arbitrary number J of spectral-field components, such
that;

J

Sy (xy.0)}=>0 (x.k.0)3{8,(x.y.1)}, (21)
J=1

it can be easily shown that
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which reduces to Eqg. (19) when J=2.

Summary

In summary, the general form of the covariance
transformation theorem, providing (y,v,) in terms of the
statistical properties of ¢, and 6, when the Fourier
transform of v, (w,) is proportional to that of 6, (6,), is
given by Equat|ons (4) and (5). The form of the
transformation providing the autocovariance <1//2> (for the
special case where y, =y, and 6, =6,) is given explicitly
in Equations (1) and (2). Another special case, providing
the autocovariance (i) when 3{y} is the weighted sum
of two linearly independent spectral-field components, is
given by Equations (19) and (20); while an extension of
this result for the case where 3{y} depends on an
arbitrary number J of linearly independent spectral-field
components is provided in Equations (21) and (22).

The covariance transformations defined and derived in
the present work are useful in mathematical formulations
of turbulent flame propagation which relate properties of
the turbulent flame (e.g., its speed and structure) to the
properties of the reactant mixture through which the
flame propagates (e.g., turbulence intensity, length and
time scales and energy distribution). Such formulations
can allow improved understanding of turbulent flame
propagation and ultimately the potential for greatly
enhanced combustion rates and improved fire safety.
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