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Nowadays  the  GPS  measurements  are  one  of  the  most frequently  used technique  in  geodesy. 
With this technique ellipsoidal height can be reckoned. However in the engineering practice orthometric 
heights (height above sea level) are used.  The orthometric heights are determined by levelling.  
Transforming the GPS-derived ellipsoidal heights to orthometric heights it is important to know the 
distance between the ellipsoidal and the geoid surface, called the geoid height or geoid undulation. 
GPS levelling method is easy to determine geoid height of related region. Geoid height calculated by 
soft computing methods such as fuzzy logic and neural networks has gained more popularity recently. 
In this study, it examined effect of increasing number of neurons in neural networks to determine geoid 
height. The  neural  network  approach  used  in  this  study  is based on  a back propagation neural 
network  learning the functional  relationship  between  geographic  position and  geoid undulation.  
Thus, inputs to the neural network are geographic position (latitude and longitude), and the output from 
the network is the predicted geoid undulation. 
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INTRODUCTION 
 
There are two types of heights used in geodesy. These 
are: orthometric height which is reckoned from geoid and, 
the second one is ellipsoidal height reckoned from 
ellipsoid. Orthometric height is a physical height on the 
other hand; ellipsoidal height is a mathematical height. 
These two height systems cannot be coincided with each 
other.  In most engineering and surveying project, 
orthometric heights are required because orthometric 
height reflects the topography better than ellipsoidal 
height.  The difference between the two height systems 
are called geoid height (undulation) and can be obtained 
in the following simple equation: 
 
N=h-H                                                               (1) 
 
Where, N  denotes  the  geoid  height,  h  and  H  are  the 
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ellipsoidal and orthometric heights, respectively. The 
importance of accurately obtaining the geoid height has 
increased in recent years with the advance of quantity 
and quality of satellite positioning systems such as 
(GPS). GPS provides height information relative to a best 
fitting earth ellipsoid rather than the geoid. To convert 
ellipsoidal heights derived from GPS to conventional 
orthometric heights the relationship between ellipsoid and 
geoid mentioned Equation 1 must be known. Orthometric 
heights can be readily computed from (1) if the geoid and 
ellipsoidal height are known. Ellipsoidal heights, or 
ellipsoidal height differences, can be derived from GPS 
more economically than orthometric heights. 
Determination of the latter requires time-consuming 
leveling. More details can be found in Wellenhof and  
Moritz  (2006), Featherstone (2001), Engelis et al. (1985), 
Torge (2001),Yilmaz and Arslan (2008). 

GPS/levelling geoid is easy to calculate and geoid 
heights obtained by GPS/levelling can be used to 
modelling the geoid in the region of interest using 
polynomial coefficients (interpolation) (Yanalak and 
Baykal, 2001) and soft computing  model  such  as  fuzzy 
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logic (Yilmaz, 2005) and Akyilmaz (2005). 

In this study, we deal with Artificial Neural Network 
(ANN) method alternative to other geoid determination 
methods such as surface polynomials, fuzzy logic for the 
interpolation of geoid heights. 

Some of these studies are Seager at al. (1999), Kuhar 
et al. (2001), Veronez et al. (2005), Kutoglu (2006), 
Kavzoglu and Saka (2005), Palencz and Volgyesi (2003).  
Although many studies have been performed by using 
ANN to determine geoid height, effect of increasing 
number of hidden nodes in the layer has not been studied 
exactly in these studies.  Kavzoglu and Saka have just 
examined two different numbers of hidden nodes (8 and 
10) in the layer. Another studies have been performed 
with ANN versus surface polynomial by Kutoglu (2006)), 
Veronez et al. (2005); Weiwei and Xiudung (2010). 
 
 
METHODOLOGY 
 
Artificial neural networks (ANNs) 
 
Artificial  neural  networks  (ANNs),  or  shortly, neural networks  
(NN) have been used  for  the structure and functionality  of  
biological  natural  of  human brain.  Therefore, ANN is found to be 
more flexible and suitable than other modeling methods (Zhang et 
al., 1997). ANN is based  on  the neural  architectures  of  the 
human  brain (Haykin, 1994), and described as group of simple 
processing units, known  as  neurons  (nodes),  that  are  arranged  
in parallel  layers  that  are  connected  to  each  other  by weighted  
connections.  By  virtue  of  hidden  layers  of neurons that lie 
between the input and output layers of  the  network,  and  the  
nonlinear  activation  functions that are used  to  translate nodal  
input  to output, ANN provides  linear  and  nonlinear  modeling  
without  the requirement  of  preliminary  information  and 
assumption  as  to  the  relationship  between  input  and output  
variables.  This  provides  ANN  an  advantage over  other statistical 
and conventional  prediction methods  such  as  logistic  regression  
and  numerical methods,  in  which  nonlinear  interactions  
between variables must be modeled  in explicit functional form (Tu, 
1996). ANN  trained with feed-forward back-propagation algorithm 
has been studied extensively and applied successfully  to  various  
areas,  such  as automotives (Majors et al., 2002), banking (Arzum 
and Yalcin, 2007), electronics (Bor-ren and Hof, 2003), finance 
(Xiaotian et al., 2008), industry (Cheginia et al., 2008),  oil and 
gas(Peranbur and Preechayasomboon, 2002), and robotics (Huang 
et al., 2008)  as  well  as  others.  The most ANNs contain three 
layers:  input, output and hidden layer.  Generally, there are various 
types of ANN techniques for example feed forward network, radial 
basis network, generalized regression network and recurrent neural 
network.  

Feed-forward  back-propagation  and  radial  basis ANN  the  
most  often  used  of  networks  type. They have been utilized to 
solve a number of real problems, although  they  gained  a  wide  
use,  however  the challenge  remains  to  select  the best of  them.  
In other words, there are no perfectly clear methods to determine 
the best network type. In this paper, geoid heights are calculated 
using feed-forward back-propagation. 
 
 
A Feed forward neural network  
 
Multi-layer feed-forward network was first established by Rumelhart 
(Rumelhart et al., 1986).  Among  the  existing several  neural  
networks  such  as   recurrent   networks,  Hopfield   networks,   etc. 

 
 
 
 
the  feed-forward  is  most popular,  primarily  due  to  their  
simplicity  from  the viewpoint  of  structure  and  ease  of  
mathematical analysis, good representational capabilities.  Feed 
forward  network  has  been  applied  successfully  to various  
application  domains,  such  as  prediction, controlling, system 
modeling and identification, signal processing  and  patter  
classification (Bilski, 2005).  Overall, feed-forward  architecture  as  
shown  in  Figure  1 demonstrates  an  arrangement  of  
interconnected nodes  called  neurons  by  sets  of  connections  
weight organized  into  three  groups  called  layers,  that is, input, 
hidden, and output layers (Abdalla et al., 2010). 

In  feed  forward  network  each  neuron  in  a  layer receives  
weighted  inputs  from  a  previous  layer  and transmits  its output  
to neurons  in  the next  layer.  The sums of weighted inputs are 
computed by Equation (2) and this  sums  is  transferred  by  an  
activation  function shown  in  Equation (3). The  output  values  of  
network  are compared  with  the  actual  output  and  the  error  of 
network  is  computed  with  Equation (4).  The training process 
continues until this error met acceptable value.  
 

                                            (2) 

 

                              (3) 

 

                                            (4) 

 

where   is  input  neuron,   is weight  coefficient of each input 

neuron,   is bias,   is the summation of  weighted  inputs,  

  is  the  response  of  system,   is  the nonlinear 

activation function,  is  the observed  output value,  E  is  the  

error  between  output observed  value  and  network  result.  
Furthermore, in the Figure 1, N is the number of input patter and M 
is number of neurons in hidden layer (Abdalla et al., 2010).  

The  back-propagation  algorithm  for  training  of feed-forward  
network  was  inspired  by  Rumelhart  1986.  The  training process 
adjusts  the connection weight  and  bias  of  network  in  order  to 
minimize  the error function  (that is, instantaneous  sum  squared  
error) defined in Equation 4. 

The  adjustment  of  connection  weight  are conducted  by  back-
propagating  the  errors  to  the network.  To achieve this, the 
connection weight is adjusted by an amount proportional to the 
gradient of error with respect to the weight, shown as follows:  
 

                                                            (5) 

 
where    is  the  learning rate  parameter which  is used  to  

controlling  the  convergent  speed  of  the training algorithm and  

 the  local gradient of . 

The  BP  algorithm  presents  a  better  performance with a 

second-order term referred to as the momentum coefficient  ,  

which  introduces  the  old  connection weight  change  as  a  
parameter  for  the  calculation  of the new connection weight 
change. 
 

                                            (6) 

 
 
Data 

 
In this study 1005 points whose latitude, longitude, ellipsoidal height
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Figure 1. General structure of feed forward network. 

 
 
 

 
 
Figure 2. Distribution of model and test points in Istanbul (black dot  shows model and red dot show test points). 

 
 
 
and orthometric height are known were used to construct neural 
network models in the region. The points are homogenously 
distributed and randomly selected in Istanbul; the point density is 
nearly one point in 10 km2. The data covers the region between 41° 
30´2.79″ > ϕ > 40° 48´13.75″ and 29° 54´ 24.24″ > λ > 27° 59´ 
3.05″. The standard deviation of the ellipsoidal heights after the 
adjustment of the network has been found to be ± 2.56 cm (Ayan  et 

al., 2006). To construct the neural network models latitude and 
longitude are taken as inputs and geoid heights of the points are 
taken as outputs. To check for the calculation, randomly selected 
178 points which had not been included in the preparation of the 
neural network models are used. The distribution of the 1005 model 
points and the 178 test points used in the ANN can be seen in 
Figure 2. 
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Table 1. Summary of results at model and test points obtained by neural networks using different numbers of neuron. 
 

Number of 
neuron 

Model points Test points 

Maximum 
Error (cm) 

Minimum 
Error (cm) 

RMSE (cm) 
Maximum 
Error (cm) 

Minimum 
Error (cm) 

RMSE (cm) 

5 20.49 -15.71 4.769 10.25 -10.34 4.403 
10 12.44 -13.78 4.083 12.57 -3.96 3.814 
15 11.89 -12.60 3.523 8.55 -5.49 3.496 
20 11.61 -12.80 3.517 7.88 -7.13 3.508 
25 13.80 -12.05 3.444 8.30 -5.11 3.419 
30 10.52 -12.05 3.310 10.11 -5.27 3.259 
35 11.39 -13.60 3.238 9.39 -4.62 3.300 
40 11.76 -11.83 3.206 9.11 -6.06 3.303 

 
 
 

Table 2. Number of points that error values greater than +7 cm and lower than -7 cm at both model and test 
points. 
 

Number of 
neuron 

Number of points error values 
greater than +7 cm 

Number of points error values lower 
than -7 cm 

Model points Test points Model points Test points 

5 56 8 75 9 
10 63 4 39 7 
15 34 5 27 5 
20 29 6 22 6 
25 22 3 17 5 
30 20 1 19 3 
35 21 3 13 4 
40 18 5 18 5 

 
 
 
RESULTS AND DISCUSSION 
 
In this study, geoid height is calculated by neural network 
with taking eight different numbers of neurons. Models 
are constructed by starting at neuron number 5 and each 
time neuron number is increased in 5 and last models are 
finished neuron number reached at 40. Therefore, eight 
different neural network models are set up.  It is aimed to 
show both neural network method can be used in geoid 
height calculations and effect of increasing number of 
neurons. Summary of obtained results are shown in 
Table 1. 

When Table 1 is examined, the highest RMSE value is 
4.769 cm obtained using 5 neurons, the lowest RMSE 
value is 3.206 cm obtained using 40 neurons in neural 
network calculations at model points. On the other hand, 
the highest RMSE value is 4.403 cm obtained using 5 
neurons, the lowest RMSE value is 3.259 cm obtained 
using 30 neurons in neural network calculations at test 
points. It can be seen that RMSE values are decreasing 
as the neuron numbers are increased until number of 
neuron is 30 at both model and test points. After neuron 
number is 30, RMSE value  is  still  decreasing  at  model 

points, however, it cannot be said same thing at test 
points. Because After neuron number is 30 RMSE values 
is getting increasing at test points. This indicates that if 
neuron number is selected larger than 30, neural network 
model is over fitting. 

Maximum and minimum error values are varied 
between -15.71 and +20.49 cm at 5 neurons and 
maximum and minimum error values are varied between 
-11.83 and +11.76 cm at 40 neurons at model points. 

Number of points that error values greater than +7 cm 
and lower than -7 cm are examined at both model and 
test points and results about this are given in Table 2. If 
these points are carefully searched, it is seen that some 
points have large error values at all neural models. Points 
numbered at 735, 747, 858, 898, 179 and 874 have 
generally large minimum error values and at 730, 1033, 
736, 567 and 132 huge maximum error values at model 
points. Because these points have large errors at all 
neural models, it can be inferred that either height of 
these points are defective or incompatible. Therefore, 
heights of these points must be checked or throw away 
from neural model to get better results. Same thing has 
done at test points and points numbered at 458, 683, 840  



 
 
 
 
have generally huge minimum error values and at 130, 
873, 819, 91 have big maximum error values. 
 
 
Conclusion 
 
This study shows that neural network can be used as 
calculation method in geoid height determination.  
Changing number of neuron numbers affects the geoid 
height results. To find suitable number of neuron is a trial 
and error task. If appropriate number of neuron is not 
selected, model can be overfitting and these leads to 
wrong results. This means neural network model gives 
better result at model points but it also gives worse 
results at test points. RMSE value is used to validate 
neural network model. If RMSE values are close at both 
model and test points, constructed neural model can be 
used (as it happen neuron number from 5 - 30), 
otherwise neural model cannot validate (as it happen in 
neuron number 35 and 40). 

It is also important to keep in mind the number of points 
used in neural network.  If selected points are 
represented the study area well enough, precision of 
neural network and other calculation methods of geoid 
height will be high. And lastly, quality of points also effect 
precision of geoid height results. 
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