
International Journal of the Physical Sciences Vol. 6(31), pp. 7095 - 7099, 30 November, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.1499
ISSN 1992 - 1950 ©2011 Academic Journals

Review

ZLoc: A C++ library for local search

Roya Rashidi1, Reza Rafeh2*, Mohsen Rahmani2 and Ehsan Azizi Khadem3

1
Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

2
Department of Computer Engineering, Malayer Branch, Islamic Azad University, Malayer, Iran.

3
Department of Computer Engineering, Lorestan University, Iran.

Accepted 20 October, 2011

Local search is known as an effective technique for solving combinatorial optimization problems.
However, there are few tools that provide high level facilities for users to implement their own local
search algorithms. In this paper, we introduce ZLoc, a new C++ library for local search. ZLoc supports
many high-level features usually found in modeling languages, such as Zinc. It allows users to define
their models in terms of variables and constraints, then it specifies their favorite local search method
for solving the model.

Key words: ZLoc, C++, search, algorithm.

INTRODUCTION

Combinatorial optimization problems appear in many
academic and practical applications, such as planning,
timetabling, routing and DNA sequencing. Often such
problems are NP-Hard, that is, there is no general and
efficient algorithm for solving them. This is because the
search space grows exponentially with the size of the
problem (Marriott and Stuckey, 1998).

The main steps to tackle combinatorial optimization
problems are modeling and solving. The solving step
uses three main techniques: mathematical methods, local
search and constraint programming (Banda et al., 2006).

Mathematical methods are rooted in operation research
and are believed to be efficient and effective. Examples
include methods such as simplex (Vanderbei, 2008) and
interior point (Roos et al., 2006). However, these techni-
ques usually require the modelers to provide a linear
formulation for problem which may be difficult for some
problems. Constraint programming techniques are more
flexible than mathematical methods. These techniques
prune the search space to reduce the execution time.
However, for some real problems, the execution time
may be considerably high (Rafeh, 2008a). Local search
techniques are very efficient and effective for solving
those problems for which a good heuristic is known. These

*Corresponding author. E-mail: r-rafeh@araku.ac.ir. Tel: +98
861 2625005. Fax: +98 861 2625003.

techniques avoid exploring the search space completely,
as a result they do not guarantee to find the solution and
even if the solution is achieved, it is unclear how far that
solution diverges from the optimal one. But if local search
is guided properly, often high-quality solution is achieved
faster than the aforementioned algorithms (Beck et al.,
2011).

Modeling tools that are most relevant to our work
include constraint programming languages, constraint
programming libraries and (mathematical) modeling
languages. Constraint programming languages, such as
Comet (Hentenryck and Michel, 2005) and Eclipse
(Aggoun et al., 2008) are generic programming
languages and support all solving techniques. However,
they lack support of high level modeling. As a result, the
user must have sophisticated programming skills
(Aggoun et al., 2008; Hentenryck et al., 2005; Rafeh,
2008b). Constraint programming libraries, such as
Localizer++ (Michel and Hentenryck, 2001) are built in
other programming languages (often object-oriented).
Similar to constraint programming languages, they do not
support high-level modeling and furthermore, some
restrictions may be imposed by the host language. On
the positive side, for using such libraries, there is no need
to learn a new language. Mathematical modeling langua-
ges have simple syntax and are close to mathematic
expressions. They support high level modeling which
makes these languages accessible for non-programmers.
The main issue with current modeling languages is their

7096 Int. J. Phys. Sci.

support of just one solving technique. For example,
AMPL (Fourer, 2002) supports MIP, OPL (Hentenryck et
al., 1999) supports CP techniques and Localizer (Michel
and Hentenryck, 1997) supports local search algorithms.
Zinc is the only high-level modeling language that
supports all the solving techniques (Rafeh, 2008a).

In this paper, we present ZLoc which is a new C++
library to implement local search algorithms. ZLoc
supports many high level structures that exist in
mathematical modeling languages, especially Zinc.

The rest of the paper is organized as follows: brief
reviews of the most relevant tools to ZLoc, introduction to
ZLoc and its features, an example in ZLoc, comparison of
ZLoc with Comet and finally conclusion.

RELATED WORK

Recently, modeling tools for local search have received
significant attention. Local search algorithms for
optimization problems were first developed in operations
research. One barrier in developing a modeling tool for
local search algorithms is the strong connection between
models and search strategies, which makes it difficult to
find a framework that provides a separate formulation for
modeling and search.

In 1997, Localizer was developed as the first modeling
language for local search. Localizer introduced the
concept of invariants to specify incremental algorithms
declaratively. An invariant (which is also called a one-way
constraint) is an equation of the form Y = f (X1; X2; :::;
Xn) which relates variable Y to variables X1; X2; :::; Xn
(we say variable Y is functionally dependent on variables
X1; X2; :::; Xn). Any changes of the value of any variable
Xi (which is also called driver variable) causes the value
of Y (which is also called dependent variable) to be
updated (but not vice versa).

Later in 2001, Localizer++ was developed as a C++
library for local search. Localizer++ followed Localizer's
idea of invariants, but used this concept for a larger class
of constraints. In 2001, the Comet project was started.
Comet also provides invariants. It provides a set of
constraints with default definition of violation degree, but
allows users to define new classes of constraints with
their own meaning of violation.

Comet is an object-oriented constraint programming
language which has been written in Java and supports
local search (it has recently extended to support pro-
pagation techniques as well). It allows the specification of
both conceptual and design models.

ZLOC

ZLoc is a new C++ library which allows users to model
their problems and solve them using local search
algorithms. ZLoc supports mathematic structures and ex-
pressions, lists, sets, multi dimension arrays with arbitrary

index set over variety of data types and constraints over
variety of data types and global constraints, such as
alldifferent.

Our motivation to design ZLoc was to utilize Zinc with a
fast local search solver. The current local search solver of
Zinc is implemented in eclipse which is a logic language.

In logic languages, changing the value of variables is
unnatural, something that is essential for implementing
local search algorithms. This limitation precludes solving
Zinc models by local search algorithms efficiently. ZLoc
supports Zinc data types, user-defined functions,
predicates, expressions and constraints. In addition, it
provides necessary operations for guiding local search.

ZLoc is similar to Comet in many features.
Nonetheless, Comet lacks some features found in Zinc
models like user-defined functions and predicates which
are the key features in implementing user-defined search
algorithms (Rafeh, 2011).

Each ZLoc model consists of two sections: declaration
and search. In declaration section, the problem is
modeled by defining expressions and constraints. In
search section the problem is solved using a local search
technique. To implement the search algorithm in addition
to built-in structures in ZLoc, the user can also use C++
structures.

Each ZLoc model includes the following components:

- Data types: ZLoc supports lists, arrays and sets over
arbitrary data types, while in Zinc, array index set is not
necessarily integer, in ZLoc index set of an array can be
an integer range or a set of integers.
- Variables: Based on instantiation, Zinc variables are
classified as parameters and decision variables. A
parameter is initialized before solving the model, while
the value of a decision is determined after solving (Rafeh,
2008a). ZLoc decision variables may be integers, floats
and sets.
- Expressions and operations: ZLoc supports variety of
mathematic operations, logic expressions and operations
over sets, such as union, intersection and membership.
‘comprehened’ acts as a loop to initialize lists, arrays and
sets. Other iteration means include forall, sum, max, prod
and min.
- Constraints: ZLoc supports variety of constraints over
integers, floats and sets. Global constraints like
alldifferent are supported as well. Similar to Comet, ZLoc
provides necessary functions to guide local search, such
as get_violation (v) to calculate the violation degree
associated with variable v, get_assign_delta (x, v) to
calculate the changing violation degree by assigning
value v to variable x, get_assign_delta ([x1, x2,..], [v1,
v2,..]) to calculate the changing violation degree by
assigning value vi to variable xi and get_swap_delta (a, b)
to calculate the new violation degree after swapping
variables a and b.

For each constraint, the violation degree is computed

accordingly. For instance, the violation degree of

Rashidi et al. 7097

Figure 1. The magic square model.

arithmetic constraint l>=r is max (0, r-l) (Hentenryck et al.,
2005). In ZLoc, when the value of a variable is changed,
the violation degree of all constraints in which the
variable appears, is automatically updated.

Example

Here, we explain ZLoc by means of an example, the
magic square problem. The problem consists of
arranging numbers 1..n

2
 in an n × n matrix such that the

sum of every row, column and main diagonal are equals,
that is, n × (n

2
+ 1)/2. The model is depicted in Figure 1.

In the first line we declare the size of square. A range
of numbers 1 to n is defined in line 2. In line 3, we
initialize T as the sum of rows, columns and diagonals. In
line 4, a two-dimensional array is declared. For every i,j,
magic[i][j] shows the value of magic square in row i and
column j. A two dimensional array tabu in line 5 is defined
to keep ‘tabu’ positions. In line 6, variables i,j are defined
to be used in loops. Constraints in lines 7 to 11 ensure
that the sum of rows, columns and diagonals is n ×
(n

2
+1)/2.

The search part of the model is depicted in Figure 2.
Function move selects a neighbor using ‘tabu’ search
technique. The neighbor is obtained by swapping
magic[i][j] and magic[k][l] so that the violation degree will
be the most reduced. In lines 2 to 4, necessary lists are
defined. Lines 5 to 9 store pair(i,j) in list
pairIndex_with_violation if it is not ‘tabu’ and the violation
degree of magic[i][j] is greater than zero. By using
function get_swap_delta in lines 10 to 18, after swapping
magic[i][j] and maigic[k][l] the new violation degree is
calculated. Note that neither (i,j) nor (k,l) must be ‘tabu’.

Then, pairs (i,j) and (k,l) with the new violation are stored
in list. Line 19 sorts viol_swap_2cel ascending and
selects its first element. This element involves pairs (i,j)
and (k,l) as well as the minimum violation degree. We
swap magic[i][j] and magic[k][l] by using function swap in
line 23. In lines 24 and 25 both pairs are stored in ‘tabu’
list and remain there until it+tabuLength iteration. In line
26, it is incremented as the iteration controller.

EXPERIMENTAL RESULTS

Since ZLoc shares many features with Comet, we
compared them using a bunch of well-known
benchmarks. Table 1 shows the execution time and
possibility of finding feasible solutions. The execution
time shown in the table is the average of 20 run for each
model. The local search technique used for solving the
model is mentioned in the table. Models have been run
on an Intel Pentium IV CPU 3.0 GHz, 1.00 GB of RAM
and Microsoft Windows XP Operation System.

As shown in Table 1, ZLoc works better for queens
(dis-equality constraints), knapsack and open stacks.
Although, for perfect squares Comet is better with respect
to the execution time, Zloc finds feasible solution by a
better chance. The main reason for Comet to be faster in
solving queens (alldifferent), magic squares and perfect
squares is that aggregated functions like sum and global
constraints like alldifferent have been implemented
efficiently. We are currently making such functions more
efficient in ZLoc. Since Zinc is a high level modeling
language, there is an overhead in mapping Zinc models
to design models. The execution times shown in the table
includes the mapping overhead. The mapping process

1. const int n=6;

2. Range Size(1,n);

3. int T=(n*(pow(n,2)+1))/2;

4. Array<Array<varInt> > magic(1,pow(n,2));

5. Array<Array<int> > tabu;

6. elemParameter<int> i,k;

7. add_cons(forall(k,Size,sum(i,Size,magic[k][i])==T));

8. add_cons(forall(k,Size,sum(i,Size,magic[i][k])==T));

9. add_cons(sum(i,Size,magic[i][i])==T);

10. add_cons(sum(i,Size,magic[i][n-i+1])==T);

11. add_cons(sum(i,Size,magic[i][n-i+1])==T);

7098 Int. J. Phys. Sci.

Figure 2. Selecting a neighbor by using tabu search technique in magic square problem.

Table 1. Experimental results.

Problem

Technique

Comet ZLoc

Execution time
(s)

Percentage of possible
answers (%)

 Execution time
(s)

Percentage of possible
answers (%)

n-queen (512 queens with alldifferent
constraint)

Min conflict 0.3695 100

8.971 100

n-queen (128 queens with dis-equality
constraints)

Min conflict 63.9523 100

35.5225 100

Knapsack (34 items) Greedy 0.8586 100 0.075 77

Magic square (6 × 6) Tabu search 0.381 100 2.7126 100

OpenStack (15 customers,15 products) Greedy 7.8249 100 4.7086 100

Perfect square (7 × 7) Simulated annealing 0.1967 8 0.3538 28

1. int move(int it){

2. List<tuple<int,int> > pairIndex_with_violation;

3. List<tuple<int,int,int,int,int>>

4. viol_swap_2cel,viol_swap_2cel2;

5. for(int i=1;i<=n;i++)

6. for(int j=1;j<=n;j++)

7. if(tabu[i][j]<=it)

8. if(get_violation(magic[i][j])>0)

9. pairIndex_with_violation.insert(make_tuple(I,j));}

10. for(int z=1;z<=pairIndex_with_violation.length();z++){

11. tuple<int,int> cel1=pairIndex_with_violation[z];

12. int i=get<0>(cel1);

13. int j=get<1>(cel1);

14. for(k=1;k<=n;k++){

15. for(int l=1;l<=n;l++){

16. if((I != k || j != l) && tabu[k][l]<=it){

17. int viol=get_swap_delta(magic[i][j],magic[k][l]);

18. viol_swap_2cel.insert(make_tuple(viol,I,j,k,l));}}}

19. viol_swap_2cel2=sort2(viol_swap_2cel);

20. tuple<int,int,int,int,int> selected_pair=viol_swap_2cel2[1];

21. i=get<1>(selected_pair); j=get<2>(selected_pair);

22. k=get<3>(selected_pair); l=get<4>(selected_pair);

23. swap(magic[i][j],magic[k][l]);

24. tabu[i][j]=it+tabuLength;

25. tabu[k][l]=it+tabuLength;

26. it++;

27. return it;}

Rashidi et al. 7099

with and its overhead has been discussed in details
(Rafeh, 2008a).

CONCLUSIONS AND FUTURE WORK

We introduced ZLoc, a C++ library for local search. ZLoc
supports high-level structures usually found in modeling
languages like Zinc. Our experimental results show that
ZLoc is competitive with Comet which is known as an
efficient constraint programming language for local
search.

In future, we plan to make this library as efficient as
possible and link it to Zinc to allow Zinc modelers try local
search techniques for solving their models in addition to
other solving techniques supported with Zinc.

REFERENCES

Aggoun A, Lada, Chan D (2008). Eclipse User Manual” Book Eclipse

User Manual Series Eclipse User Manual ed., Editor ed.^eds. 245 p.
Banda DLMG, Marriott K, Rafeh R, Wallace M (2006). The Modelling

Language Zinc,” CP 2006, vol. LNCS 4204, pp. 700-705.
Beck JC, Feng TK, Watson JP (2011). Combining Constraint

Programming and Local Search for Job-Shop Scheduling,” INFORMS
J. Comput., 23(1): 1-14.

Fourer R, Gay DM, Kernighan BW (2002). AMPL: A Modeling Language
for Mathematical Programming, Duxbury Press, 540 p.

Hentenryck PV, Lustig I, Michel LA, Puget JF (1999). The OPL
Optimization Programming Language, MIT Press, 255pp.

Hentenryck PV, Michel L, LIU L (2005). Constraint-Based Combinators
for Local Search,” Springer, 10: 363-384.

Marriott K, Stuckey PJ (1998). Programming with Constraints: An
Introduction, the MIT Press, 483pp.

Michel L, Hentenryck PV (1997). Localizer: A Modeling Language for
Local Search,” Principles and Practice of Constraint Programming,
CP97, pp. 237-251.

Michel L, Hentenryck PV (2001). Localizer++: An Open Library for Local
Search,” Technical Report CS-01-02, Brown University, 35 p.

Rafeh R (2008a). The Modelling Language Zinc. Clayton School of
Information Technology. Melbourne, Monash. PhD: 201.

Rafeh R (2008b). The Modelling Language Zinc. Monash University.
PhD. Thesis.

Rafeh R (2011). Proposing a new search template for modelling
languages,” Procedia CS, 3: 1490-1493.

Roos C. Terlaky T, Vial JP (2006). Interior point methods for linear
optimization, Birkhäuser, 497p.

Vanderbei RJ (2008). Linear programming: foundations and extensions,
Springer, 467p.

