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Local search is known as an effective technique for solving combinatorial optimization problems. 
However, there are few tools that provide high level facilities for users to implement their own local 
search algorithms. In this paper, we introduce ZLoc, a new C++ library for local search. ZLoc supports 
many high-level features usually found in modeling languages, such as Zinc. It allows users to define 
their models in terms of variables and constraints, then it specifies their favorite local search method 
for solving the model. 
 
Key words: ZLoc, C++, search, algorithm.  

 
 
INTRODUCTION 
 
Combinatorial optimization problems appear in many 
academic and practical applications, such as planning, 
timetabling, routing and DNA sequencing. Often such 
problems are NP-Hard, that is, there is no general and 
efficient algorithm for solving them. This is because the 
search space grows exponentially with the size of the 
problem (Marriott and Stuckey, 1998). 

The main steps to tackle combinatorial optimization 
problems are modeling and solving. The solving step 
uses three main techniques: mathematical methods, local 
search and constraint programming (Banda et al., 2006). 

Mathematical methods are rooted in operation research 
and are believed to be efficient and effective. Examples 
include methods such as simplex (Vanderbei, 2008) and 
interior point (Roos et al., 2006). However, these techni-
ques usually require the modelers to provide a linear 
formulation for problem which may be difficult for some 
problems. Constraint programming techniques are more 
flexible than mathematical methods. These techniques 
prune the search space to reduce the execution time. 
However, for some real problems, the execution time 
may be considerably high (Rafeh, 2008a). Local search 
techniques are very efficient and effective for solving 
those problems for which a good heuristic is known. These 
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techniques avoid exploring the search space completely, 
as a result they do not guarantee to find the solution and 
even if the solution is achieved, it is unclear how far that 
solution diverges from the optimal one. But if local search 
is guided properly, often high-quality solution is achieved 
faster than the aforementioned algorithms (Beck et al., 
2011).  

Modeling tools that are most relevant to our work 
include constraint programming languages, constraint 
programming libraries and (mathematical) modeling 
languages. Constraint programming languages, such as 
Comet (Hentenryck and Michel, 2005) and Eclipse 
(Aggoun et al., 2008) are generic programming 
languages and support all solving techniques. However, 
they lack support of high level modeling. As a result, the 
user must have sophisticated programming skills 
(Aggoun et al., 2008; Hentenryck et al., 2005; Rafeh, 
2008b). Constraint programming libraries, such as 
Localizer++ (Michel and Hentenryck, 2001) are built in 
other programming languages (often object-oriented). 
Similar to constraint programming languages, they do not 
support high-level modeling and furthermore, some 
restrictions may be imposed by the host language. On 
the positive side, for using such libraries, there is no need 
to learn a new language. Mathematical modeling langua-
ges have simple syntax and are close to mathematic 
expressions. They support high level modeling which 
makes these languages accessible for non-programmers. 
The main issue with current modeling  languages  is  their 
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support of just one solving technique. For example, 
AMPL (Fourer, 2002) supports MIP, OPL (Hentenryck et 
al., 1999) supports CP techniques and Localizer (Michel 
and Hentenryck, 1997) supports local search algorithms. 
Zinc is the only high-level modeling language that 
supports all the solving techniques (Rafeh, 2008a). 

In this paper, we present ZLoc which is a new C++ 
library to implement local search algorithms. ZLoc 
supports many high level structures that exist in 
mathematical modeling languages, especially Zinc.  

The rest of the paper is organized as follows: brief 
reviews of the most relevant tools to ZLoc, introduction to 
ZLoc and its features, an example in ZLoc, comparison of 
ZLoc with Comet and finally conclusion. 
 
 
RELATED WORK 
 
Recently, modeling tools for local search have received 
significant attention. Local search algorithms for 
optimization problems were first developed in operations 
research. One barrier in developing a modeling tool for 
local search algorithms is the strong connection between 
models and search strategies, which makes it difficult to 
find a framework that provides a separate formulation for 
modeling and search. 

In 1997, Localizer was developed as the first modeling 
language for local search. Localizer introduced the 
concept of invariants to specify incremental algorithms 
declaratively. An invariant (which is also called a one-way 
constraint) is an equation of the form Y = f (X1; X2; :::; 
Xn) which relates variable Y to variables X1; X2; :::; Xn 
(we say variable Y is functionally dependent on variables 
X1; X2; :::; Xn). Any changes of the value of any variable 
Xi (which is also called driver variable) causes the value 
of Y (which is also called dependent variable) to be 
updated (but not vice versa). 

Later in 2001, Localizer++ was developed as a C++ 
library for local search. Localizer++ followed Localizer's 
idea of invariants, but used this concept for a larger class 
of constraints. In 2001, the Comet project was started. 
Comet also provides invariants. It provides a set of 
constraints with default definition of violation degree, but 
allows users to define new classes of constraints with 
their own meaning of violation. 

Comet is an object-oriented constraint programming 
language which has been written in Java and supports 
local search (it has recently extended to support pro-
pagation techniques as well). It allows the specification of 
both conceptual and design models. 
 
 

ZLOC  
 
ZLoc is a new C++ library which allows users to model 
their problems and solve them using local search 
algorithms. ZLoc supports mathematic structures and ex-
pressions, lists, sets, multi dimension arrays with arbitrary 

 
 
 
 
index set over variety of data types and constraints over 
variety of data types and global constraints, such as 
alldifferent.  

Our motivation to design ZLoc was to utilize Zinc with a 
fast local search solver. The current local search solver of 
Zinc is implemented in eclipse which is a logic language. 

In logic languages, changing the value of variables is 
unnatural, something that is essential for implementing 
local search algorithms. This limitation precludes solving 
Zinc models by local search algorithms efficiently. ZLoc 
supports Zinc data types, user-defined functions, 
predicates, expressions and constraints. In addition, it 
provides necessary operations for guiding local search.  

ZLoc is similar to Comet in many features. 
Nonetheless, Comet lacks some features found in Zinc 
models like user-defined functions and predicates which 
are the key features in implementing user-defined search 
algorithms (Rafeh, 2011).   

Each ZLoc model consists of two sections: declaration 
and search. In declaration section, the problem is 
modeled by defining expressions and constraints. In 
search section the problem is solved using a local search 
technique. To implement the search algorithm in addition 
to built-in structures in ZLoc, the user can also use C++ 
structures. 

Each ZLoc model includes the following components: 
 

- Data types: ZLoc supports lists, arrays and sets over 
arbitrary data types, while in Zinc, array index set is not 
necessarily integer, in ZLoc index set of an array can be 
an integer range or a set of integers. 
- Variables: Based on instantiation, Zinc variables are 
classified as parameters and decision variables. A 
parameter is initialized before solving the model, while 
the value of a decision is determined after solving (Rafeh, 
2008a). ZLoc decision variables may be integers, floats 
and sets. 
- Expressions and operations: ZLoc supports variety of 
mathematic operations, logic expressions and operations 
over sets, such as union, intersection and membership. 
‘comprehened’ acts as a loop to initialize lists, arrays and 
sets. Other iteration means include forall, sum, max, prod 
and min. 
- Constraints: ZLoc supports variety of constraints over 
integers, floats and sets. Global constraints like 
alldifferent are supported as well. Similar to Comet, ZLoc 
provides necessary functions to guide local search, such 
as get_violation (v) to calculate the violation degree 
associated with variable v, get_assign_delta (x, v) to 
calculate the changing violation degree by assigning 
value v to variable x, get_assign_delta ([x1, x2,..], [v1, 
v2,..]) to calculate the changing violation degree by 
assigning value vi to variable xi and get_swap_delta (a, b) 
to calculate the new   violation   degree   after   swapping 
variables a and b. 

 
For each constraint, the violation degree is computed 

accordingly. For instance, the violation degree of
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Figure 1. The magic square model. 

 
 
 
arithmetic constraint l>=r is max (0, r-l) (Hentenryck et al., 
2005). In ZLoc, when the value of a variable is changed, 
the violation degree of all constraints in which the 
variable appears, is automatically updated.  
 
 
Example 
 
Here, we explain ZLoc by means of an example, the 
magic square problem. The problem consists of 
arranging numbers 1..n

2 
 in an n × n matrix such that the 

sum of every row, column and main diagonal are equals, 
that is, n × (n

2 
+ 1)/2. The model is depicted in Figure 1.  

In the first line we declare the size of square. A range 
of numbers 1 to n is defined in line 2. In line 3, we 
initialize T as the sum of rows, columns and diagonals. In 
line 4, a two-dimensional array is declared. For every i,j, 
magic[i][j] shows the value of magic square in row i and 
column j. A two dimensional array tabu in line 5 is defined 
to keep ‘tabu’ positions. In line 6, variables i,j are defined 
to be used in loops. Constraints in lines 7 to 11 ensure 
that the sum of rows, columns and diagonals is n × 
(n

2
+1)/2. 

The search part of the model is depicted in Figure 2. 
Function move selects a neighbor using ‘tabu’ search 
technique. The neighbor is obtained by swapping 
magic[i][j] and magic[k][l] so that the  violation degree will 
be the most reduced. In lines 2 to 4, necessary lists are 
defined. Lines 5 to 9 store pair(i,j) in list 
pairIndex_with_violation if it is not ‘tabu’ and the violation 
degree of magic[i][j] is greater than zero. By using 
function get_swap_delta in lines 10 to 18, after swapping 
magic[i][j] and maigic[k][l] the new violation degree is 
calculated. Note that neither (i,j) nor (k,l) must be ‘tabu’. 

Then, pairs (i,j) and (k,l) with the new violation are stored 
in list. Line 19 sorts viol_swap_2cel ascending and 
selects its first element. This element involves pairs (i,j) 
and (k,l) as well as the minimum violation degree. We 
swap magic[i][j] and magic[k][l] by using function swap in 
line 23. In lines 24 and 25 both pairs are stored in ‘tabu’ 
list and remain there until it+tabuLength iteration. In line 
26, it is incremented as the iteration controller. 
 
 
EXPERIMENTAL RESULTS 
 
Since ZLoc shares many features with Comet, we 
compared them using a bunch of well-known 
benchmarks. Table 1 shows the execution time and 
possibility of finding feasible solutions. The execution 
time shown in the table is the average of 20 run for each 
model. The local search technique used for solving the 
model is mentioned in the table. Models have been run 
on an Intel Pentium IV CPU 3.0 GHz, 1.00 GB of RAM 
and Microsoft Windows XP Operation System.  

As shown in Table 1, ZLoc works better for queens 
(dis-equality constraints), knapsack and open stacks. 
Although, for perfect squares Comet is better with respect 
to the execution time, Zloc finds feasible solution by a 
better chance. The main reason for Comet to be faster in 
solving queens (alldifferent), magic squares and perfect 
squares is that aggregated functions like sum and global 
constraints like alldifferent have been implemented 
efficiently. We are currently making such functions more 
efficient in ZLoc. Since Zinc is a high level modeling 
language, there is an overhead in mapping Zinc models 
to design models. The execution times shown in the table 
includes the  mapping  overhead.  The  mapping  process

1.  const int n=6; 

2.  Range Size(1,n); 

3.  int T=(n*(pow(n,2)+1))/2; 

4.  Array<Array<varInt> > magic(1,pow(n,2)); 

5.  Array<Array<int> > tabu; 

6.  elemParameter<int> i,k;    

7.  add_cons(forall(k,Size,sum(i,Size,magic[k][i])==T)); 

8.  add_cons(forall(k,Size,sum(i,Size,magic[i][k])==T)); 

9.  add_cons(sum(i,Size,magic[i][i])==T); 

10. add_cons(sum(i,Size,magic[i][n-i+1])==T);   

11. add_cons(sum(i,Size,magic[i][n-i+1])==T);    
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Figure 2. Selecting a neighbor by using tabu search technique in magic square problem. 

 
 
 

Table 1. Experimental results. 

 

Problem 

 

Technique 

Comet  ZLoc 

Execution time 
(s) 

Percentage of possible 
answers (%) 

 Execution time 
(s) 

Percentage of possible 
answers (%) 

n-queen (512 queens with alldifferent 
constraint) 

Min conflict 0.3695 100 
 

8.971 100 

n-queen (128 queens with dis-equality 
constraints) 

Min conflict 63.9523 100 
 

35.5225 100 

Knapsack (34 items) Greedy 0.8586 100  0.075 77 

Magic square (6 × 6) Tabu search 0.381 100  2.7126 100 

OpenStack (15 customers,15 products) Greedy  7.8249 100  4.7086 100 

Perfect square (7 × 7) Simulated annealing 0.1967 8  0.3538 28 

1. int move(int it){   

2.   List<tuple<int,int> > pairIndex_with_violation; 

3.   List<tuple<int,int,int,int,int>>  

4.            viol_swap_2cel,viol_swap_2cel2; 

5.   for(int i=1;i<=n;i++) 

6.     for(int j=1;j<=n;j++)         

7.       if(tabu[i][j]<=it) 

8.          if(get_violation(magic[i][j])>0) 

9.             pairIndex_with_violation.insert(make_tuple(I,j));}   

10. for(int z=1;z<=pairIndex_with_violation.length();z++){ 

11.     tuple<int,int> cel1=pairIndex_with_violation[z]; 

12.         int i=get<0>(cel1); 

13.         int j=get<1>(cel1); 

14.     for(k=1;k<=n;k++){ 

15.         for(int l=1;l<=n;l++){ 

16.            if((I != k || j != l) && tabu[k][l]<=it){ 

17.               int viol=get_swap_delta(magic[i][j],magic[k][l]);           

18. viol_swap_2cel.insert(make_tuple(viol,I,j,k,l));}}} 

19. viol_swap_2cel2=sort2(viol_swap_2cel);     

20. tuple<int,int,int,int,int> selected_pair=viol_swap_2cel2[1]; 

21. i=get<1>(selected_pair);    j=get<2>(selected_pair); 

22. k=get<3>(selected_pair);    l=get<4>(selected_pair); 

23. swap(magic[i][j],magic[k][l]); 

24. tabu[i][j]=it+tabuLength;     

25. tabu[k][l]=it+tabuLength;     

26. it++;     

27. return it;} 



Rashidi et al.          7099 
 
 
 
with and its overhead has been discussed in details 
(Rafeh, 2008a). 
 
 
CONCLUSIONS AND FUTURE WORK 
 
We introduced ZLoc, a C++ library for local search. ZLoc 
supports high-level structures usually found in modeling 
languages like Zinc. Our experimental results show that 
ZLoc is competitive with Comet which is known as an 
efficient constraint programming language for local 
search.  

In future, we plan to make this library as efficient as 
possible and link it to Zinc to allow Zinc modelers try local 
search techniques for solving their models in addition to 
other solving techniques supported with Zinc. 
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