Full Length Research Paper

Spacelike ${ }_{B_{2}}$-slant helix in Minkowski 4-space $E_{E_{1}^{4}}$
 Mehmet Önder*, Hüseyin Kocayiğit and Mustafa Kazaz
 Department of Mathematics, Faculty of Science and Art, Celal Bayar University, 45047 Manisa, Turkey.

Accepted 23 December, 2009.

Abstract

In this paper, we give the characterizations of spacelike B_{2}-slant helix by means of curvatures of the spacelike curve in Minkowski 4 - space. Furthermore, we give the integral characterization of the spacelike B_{2}-slant helix.

Key words: Minkowski 4 - space, spacelike B_{2}-slant helix, Frenet frame.

INTRODUCTION

Helix is one of the most fascinating curves in Science and Nature. Helices can be seen in many subjects of Science such as nanosprings, carbon nanotubes, α-helices, DNA double and collagen triple helix (a DNA molecule has a form of well - known right-handed double helix, wherein two heteropolymer chains are wound around each other. The double helical structure is believed to be the structure of minimum free energy under the normal physiological conditions.), lipid bilayers, bacterial flagella in Escherichia coli and Salmonella, aerial hyphae in actinomycetes, bacterial shape in spirochetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells (helico-spiral structures) (Chouaieb et al., 2006; Lucas Amand and Lambin, 2005; Watson and Crick, 1953). Furthermore, in the fields of computer aided design and computer graphics, helices can be used for the tool path description, the simulation of kinematic motion or the design of highways, etc. (Yang, 2003).
A curve of constant slope or general helix in Euclidean 3 -space E^{3} is defined by the property that the tangent makes a constant angle with a fixed straight line which is called the axis of the general helix (Barros, 1997). A classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 is: A necessary and sufficient condition that a curve be a general helix is that the ratio of the first curvature to the second curvature be constant that is k_{1} / k_{2} is constant along the curve, where k_{1} and k_{2} denote the first and second curvatures

[^0]of the curve, respectively (Scofield, 1995). Analogue to that Magden (1993) has given a characterization for a curve $x(s)$ to be a helix in Euclidean 4-space E^{4}. He characterizes a helix if the function
$\frac{k_{1}^{2}}{k_{2}^{2}}+\left[\frac{1}{k_{3}} \frac{d}{d s}\left(\frac{k_{1}}{k_{2}}\right)\right]^{2}$
is constant where k_{1}, k_{2} and k_{3} are first, second and third curvatures of Euclidean curve $x(s)$, respectively, and they are nowhere zero. Corresponding characterizations of time like helices in Minkowski 4space E_{1}^{4} were given by Kocayigit and Onder (2007). Latterly Camci et al., (2009) have given some characterizations for a non - degenerate curve to be a generalized helix by using its harmonic curvatures.
Recently, Izumiya and Takeuchi (2004) have introduced the concept of slant helix by saying that the normal lines of the curve make a constant angle with a fixed direction and they have given a characterization of slant helix in Euclidean 3 -space E^{3} by the fact that the function
$\frac{k_{1}^{2}}{\left(k_{1}^{2}+k_{2}^{2}\right)^{3 / 2}}\left(\frac{k_{2}}{k_{1}}\right)^{\prime}$
is constant. After them, Kula and Yayli (2005)
investigated spherical images, the tangent indicatrix and the binormal indicatrix of a slant helix and they obtained that the spherical images are spherical helices. Analogue to the definition of slant helix, Onder et al. (2008) have defined B_{2}-slant helix in Euclidean 4-space E^{4} by saying that the second binormal vector of the curve make a constant angle with a fixed direction and they have given some characterizations of B_{2}-slant helix in Euclidean 4-space E^{4}.
In this paper, we consider spacelike B_{2} - slant helix in Minkowski 4-space E_{1}^{4} and we give some characterizations and also the integral characterization of spacelike B_{2}-slant helix.

MATERIALS AND METHODS

Minkowski space-time E_{1}^{4} is a Euclidean space E^{4} provided with the standard flat metric given by

$$
\langle,\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a rectangular coordinate system in E_{1}^{4}.
Since \langle,$\rangle is an indefinite metric, recall that a vector v \in E_{1}^{4}$ can have one of three causal characters; it can be spacelike if $\langle v, v\rangle>0$ or $v=0$, time like if $\langle v, v\rangle<0$ and null (light like) if $\langle v, v\rangle=0$ and $v \neq 0$. Similarly, an arbitrary curve $x(s)$ in E_{1}^{4} can locally be spacelike, time like or null (light like), if all of its velocity vectors $x^{\prime}(s)$ are respectively spacelike, time like or null (light like). Also recall that the pseudo-norm of an arbitrary vector $v \in E_{1}^{4}$ is given by $\|v\|=\sqrt{|\langle v, v\rangle|}$. Therefore v is a unit vector if $\langle v, v\rangle= \pm 1$. The velocity of the curve $x(s)$ is given by $\left\|x^{\prime}(s)\right\|$. Next, vectors v, w in E_{1}^{4} are said to be orthogonal if $\langle v, w\rangle=0$. We say that a time like vector is future pointing or past pointing if the first compound of the vector is positive or negative, respectively. Denote by $\left\{T(s), N(s), B_{1}(s), B_{2}(s)\right\}$ the moving Frenet frame along the curve $x(s)$ in the space E_{1}^{4}. Then T, N, B_{1}, B_{2} are the tangent, the principal normal, the first binormal and the second binormal fields, respectively. A timelike (resp. spacelike) curve $x(s)$ is said to be parameterized by a pseudo - arc length parameter s, that is $\left\langle x^{\prime}(s), x^{\prime}(s)\right\rangle=-1$ (resp. $\left\langle x^{\prime}(s), x^{\prime}(s)\right\rangle=1$). Let $x(s)$ be a spacelike curve in Minkowski space-time E_{1}^{4}, parameterized by arc length function of S. Then for the curve $x(s)$ the following Frenet equation is given as follows:

$$
\left[\begin{array}{l}
T^{\prime} \tag{1}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-\varepsilon_{1} k_{1} & 0 & k_{2} & 0 \\
0 & \varepsilon_{2} k_{2} & 0 & k_{3} \\
0 & 0 & \varepsilon_{1} k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where

$$
\langle T, T\rangle=1,\langle N, N\rangle=\varepsilon_{1},\left\langle B_{2}, B_{2}\right\rangle=\varepsilon_{2}
$$

$$
\left\langle B_{1}, B_{1}\right\rangle=-\varepsilon_{1} \varepsilon_{2} \varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1
$$

and recall that the functions $k_{1}=k_{1}(s), k_{2}=k_{2}(s)$ and $k_{3}=k_{3}(s)$ are called the first, the second and the third curvature of the spacelike curve $x(s)$, respectively and we will assume throughout this work that all the three curvatures satisfy $k_{i}(s) \neq 0,1 \leq i \leq 3$. Here the signs of ε_{1} and ε_{2} are changed by a rule. The signature rule between ε_{1} and ε_{2} can be given as follows

or

if	$\varepsilon_{2}+1$	then	$\varepsilon_{1}+1$ or -1
	-1		+1

For the obvious forms of the Frenet equations in (1) we refer to the reader to see Walrave (1995).

RESULTS AND DISCUSSION

In this section, we give the definition and the characterizations of spacelike B_{2}-slant helix.
Let $x: I \subset I R \rightarrow E_{1}^{4}$ be a unit speed spacelike curve with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ and let $\left\{T, N, B_{1}, B_{2}\right\}$ denotes the Frenet frame of the curve $x(s)$. We call $x(s)$ as spacelike B_{2}-slant helix if its second binormal unit vector B_{2} makes a constant angle with a fixed direction in a unit vector U; that is
$\left\langle B_{2}, U\right\rangle=$ constant
along the curve. By differentiation (2) with respect to s
and using the Frenet formulae (1) we have $\left\langle\varepsilon_{1} k_{3} B_{1}, U\right\rangle=0$.

Therefore U is in the subspace $\operatorname{Sp}\left\{T, N, B_{2}\right\}$ and can be written as follows

$$
\begin{equation*}
U=a_{1}(s) T(s)+a_{2}(s) N(s)+a_{3}(s) B_{2}(s) \tag{3}
\end{equation*}
$$

where
$a_{1}=\langle U, T\rangle, \varepsilon_{1} a_{2}=\langle U, N\rangle$,
$\varepsilon_{2} a_{3}=\left\langle U, B_{2}\right\rangle=$ constant
Since U is unit, we have
$a_{1}^{2}+\varepsilon_{1} a_{2}^{2}+\varepsilon_{2} a_{3}^{2}=M$.
Here M is $+1,-1$ or 0 depending if U is spacelike, timelike or lightlike, respectively. The differentiation of (3) gives

$$
\begin{aligned}
& \left(\frac{d a_{1}}{d s}-\varepsilon_{1} a_{2} k_{1}\right) T+\left(\frac{d a_{2}}{d s}-a_{1} k_{1}\right) N \\
& +\left(a_{2} k_{2}+\varepsilon_{1} a_{3} k_{3}\right) B_{1}+a_{3}^{\prime} B_{2}=0
\end{aligned}
$$

and from this equation we get
$\left.\begin{array}{l}a_{2}=-\varepsilon_{1} \frac{k_{3}}{k_{2}} a_{3}=\varepsilon_{1} \frac{1}{k_{1}} \frac{d a_{1}}{d s}, \\ \frac{d a_{2}}{d s}=-a_{1} k_{1}, a_{3}^{\prime}=0\end{array}\right\}$
Since $\frac{d a_{2}}{d s}=-a_{1} k_{1}$ and
$\frac{d a_{2}}{d s}=-\varepsilon_{1} \frac{k_{1}^{\prime}}{k_{1}^{2}} \frac{d a_{1}}{d s}+\frac{\varepsilon_{1}}{k_{1}} \frac{d^{2} a_{1}}{d s^{2}}$
we find the second order linear differential equation in a_{1} given by
$\varepsilon_{1} \frac{d^{2} a_{1}}{d s^{2}}-\varepsilon_{1} \frac{k_{1}^{\prime}}{k_{1}} \frac{d a_{1}}{d s}+a_{1} k_{1}^{2}=0$.
If we change variables in the above equation as
$t=\int_{0}^{s} k_{1}(s) d s$ then we get
$\frac{d^{2} a_{1}}{d t^{2}}+\varepsilon_{1} a_{1}=0$.
This equation has two solutions: If $\varepsilon_{1}=+1$ then the solution is
$a_{1}=A \cos \int_{0}^{s} k_{1}(s) d s+B \sin \int_{0}^{s} k_{1}(s) d s$
and if $\varepsilon_{1}=-1$ then the solution is
$a_{1}=A \cosh \int_{0}^{s} k_{1}(s) d s+B \sinh \int_{0}^{s} k_{1}(s) d s$
where A and B are constant.
Assume that $\varepsilon_{1}=-1$ and consider the solution (8). From (5) and (8) we have
$a_{2}=\frac{k_{3}}{k_{2}} a_{3}=-A \sinh \int_{0}^{s} k_{1}(s) d s-B \cosh \int_{0}^{s} k_{1}(s) d s$

$$
\begin{aligned}
a_{1}=-\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime} a_{3}= & A \cosh \int_{0}^{s} k_{1}(s) d s \\
& +B \sinh \int_{0}^{s} k_{1}(s) d s
\end{aligned}
$$

From these equations it follows that

$$
\begin{align*}
& A=a_{3}\left(\frac{k_{3}}{k_{2}} \sinh \int_{0}^{s} k_{1}(s) d s-\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime} \cosh \int_{0}^{s} k_{1}(s) d s\right) \tag{9}\\
& B=a_{3}\left(-\frac{k_{3}}{k_{2}} \cosh \int_{0}^{s} k_{1}(s) d s+\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime} \sinh \int_{0}^{s} k_{1}(s) d s\right) \tag{10}
\end{align*}
$$

Hence, using (9) and (10) we get
$B^{2}-A^{2}=\left[\left(\frac{k_{3}}{k_{2}}\right)^{2}-\frac{1}{k_{1}^{2}}\left(\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right)^{2}\right] a_{3}^{2}=$ constant

So that
$\left(\frac{k_{3}}{k_{2}}\right)^{2}-\frac{1}{k_{1}^{2}}\left(\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right)^{2}=$ constant $:=m$.
From (4), (9), (10) and (11) we have
$B^{2}-A^{2}=a_{3}^{2} m=M-1$.
Thus, the sign of the constant m agrees with the sign of $B^{2}-A^{2}$. So, if U is timelike or light like then m is negative. If U is spacelike then $m=0$. Then we can give the following corollary.

Result 1: Let $x(s)$ be a spacelike B_{2}-slant helix with timelike principal normal N in Minkowski 4-space E_{1}^{4} and U be a unit constant vector which makes a constant angle with the second binormal B_{2}. Then the vector U is spacelike if and only if there exist a constant K such that
$\frac{k_{3}}{k_{2}}(s)=K \exp \left(\int_{0}^{s} k_{1}(t) d t\right)$.
When $\varepsilon_{1}=+1$, by using (7) with similar calculations as above, we get that the spacelike curve $x(s)$ is a spacelike B_{2}-slant helix if and only if
$\left(\frac{k_{3}}{k_{2}}\right)^{2}+\frac{1}{k_{1}^{2}}\left(\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right)^{2}=$ constant .
Thus, using (11) and (12), we can characterize the spacelike B_{2}-slant helix $x(s)$ by the fact that
$\left(\frac{k_{3}}{k_{2}}\right)^{2}+\varepsilon_{1} \frac{1}{k_{1}^{2}}\left(\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right)^{2}=$ constant.
Conversely, if the condition (13) is satisfied for a regular spacelike curve we can always find a constant vector U which makes a constant angle with the second binormal B_{2} of the curve.
Consider the unit vector U defined by
$U=\left[\varepsilon_{1} \frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime} T-\varepsilon_{1} \frac{k_{3}}{k_{2}} N+B_{2}\right]$.
By taking account of the differentiation of (13), differentiation of U gives that $\frac{d U}{d s}=0$, this means that U is a constant vector. So that, we can give the following theorem:

Theorem 1: A unit speed spacelike curve $x: I \subset I R \rightarrow E_{1}^{4}$ with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ is a spacelike B_{2}-slant helix if and only if the following condition is satisfied,
$\left(\frac{k_{3}}{k_{2}}\right)^{2}+\varepsilon_{1} \frac{1}{k_{1}^{2}}\left(\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right)^{2}=$ constant .
From Theorem 1 one can easily see that the constant function in Theorem 1 is independent of ε_{2}. So, we can give the following corollary.

Result 2: The characterizations of the spacelike B_{2}-slant helix are independent of the Lorentzian causal character of the second binormal vector B_{2}. It is only related to the Lorentzian causal character of the unit principal normal vector N.

Now, we give another characterization of spacelike B_{2} slant helix in Minkowski 4-space.
Let assume that $x: I \subset I R \rightarrow E_{1}^{4}$ is a spacelike B_{2} slant helix. Then, Theorem 1 is satisfied. By differentiating (13) with respect to s we get

$$
\begin{equation*}
\left(\frac{k_{3}}{k_{2}}\right) \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right)+\frac{\varepsilon_{1}}{k_{1}} \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right) \frac{d}{d s}\left[\frac{1}{k_{1}} \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right)\right]=0 \tag{14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{\varepsilon_{1}}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}=-\frac{\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}}{\left[\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}} . \tag{15}
\end{equation*}
$$

If we write

$$
\begin{equation*}
f(s)=-\frac{\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}}{\left[\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}} . \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(s) k_{1}=\varepsilon_{1}\left(\frac{k_{3}}{k_{2}}\right)^{\prime} \tag{17}
\end{equation*}
$$

From (14) it can be written

$$
\begin{equation*}
\left[\frac{\varepsilon_{1}}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}=-k_{1} \frac{k_{3}}{k_{2}} . \tag{18}
\end{equation*}
$$

By using (17) and (18) we have

$$
\begin{equation*}
\frac{d}{d s} f(s)=-k_{1} \frac{k_{3}}{k_{2}} \tag{19}
\end{equation*}
$$

Conversely,

$$
\text { let } \quad f(s) k_{1}=\varepsilon_{1}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}
$$

and $\frac{d}{d s} f(s)=-k_{1} \frac{k_{3}}{k_{2}}$. If we define a unit vector U by
$U=-f(s) T+\varepsilon_{1} \frac{k_{3}}{k_{2}} N-B_{2}$

We have that U and $\left\langle B_{2}, U\right\rangle$ are constants. So, we have the following theorem:

Theorem 2: A unit speed spacelike curve $x: I \subset I R \rightarrow E_{1}^{4}$ with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ is a B_{2}-slant helix if and only if there exists a C^{2}-function f such that
$f k_{1}=\varepsilon_{1} \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right), \frac{d}{d s} f(s)=-k_{1} \frac{k_{3}}{k_{2}}$

Now, we give the integral characterization of the spacelike B_{2}-slant helix.
Suppose that, the unit speed spacelike curve $x: I \subset I R \rightarrow E_{1}^{4}$ with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ is a spacelike B_{2}-slant helix. Then Theorem 2 is satisfied. Let us define C^{2}-function φ and C^{1} functions $m(s)$ and $n(s)$ by
$\varphi=\varphi(s)=\int_{0}^{s} k_{1}(s) d s$
$\left.\begin{array}{l}m(s)=\frac{k_{3}}{k_{2}} \eta(\varphi)+f(s) \mu(\varphi) \\ n(s)=\frac{k_{3}}{k_{2}} \mu(\varphi)-\varepsilon_{1} f(s) \eta(\varphi)\end{array}\right\}$
Where $\quad \eta(\varphi)=\cosh \varphi, \quad \mu(\varphi)=\sinh \varphi \quad$ if $\varepsilon_{1}=-1 ;$ and $\eta(\varphi)=\cos \varphi, \quad \mu(\varphi)=\sin \varphi \quad$ if $\varepsilon_{1}=+1$. If we differentiate equations (23) with respect to s and take account of (22) and (21) we find that $m^{\prime}=0$ and $n^{\prime}=0$. Therefore, $m(s)=C, n(s)=D$ are constants. Now substituting these in (23) and solving the resulting equations for $\frac{k_{3}}{k_{2}}$, we get
$\frac{k_{3}}{k_{2}}=C \eta(\varphi)+D \mu(\varphi)$.
Conversely if (24) holds then from the equations in (23) we get

$$
f=\varepsilon_{1}(C \mu(\varphi)-D \eta(\varphi))
$$

which satisfies the conditions of Theorem 2? So, we have the following theorem:

Theorem 3: A unit speed spacelike curve $x: I \subset I R \rightarrow E_{1}^{4}$ with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ is a spacelike B_{2}-slant helix if and only if the following condition is satisfied

$$
\frac{k_{3}}{k_{2}}=C \eta(\varphi)+D \mu(\varphi)
$$

where C and D are constants, $\eta(\varphi)=\cosh \varphi$,
$\mu(\varphi)=\sinh \varphi \quad$ if $\quad \varepsilon_{1}=-1 ; \quad$ and $\quad \eta(\varphi)=\cos \varphi$, $\mu(\varphi)=\sin \varphi$ if $\varepsilon_{1}=+1$.

Conclusions

In this paper, the spacelike B_{2}-slant helix is defined and the characterizations of the spacelike B_{2}-slant helix are given in Minkowski 4- space E_{1}^{4}. It is shown that a spacelike curve $x: I \subset I R \rightarrow E_{1}^{4}$ is a B_{2}-slant helix if an equation holds between the first, second and third curvatures of the curve. Furthermore, the integral characterization of the spacelike B_{2}-slant helix is given.

REFERENCES

Barros M (1997). General Helices and a Theorem of Lancret, Proc. of the American Math. Soc., 125: 1503-1509.
Camci C, Ilarslan K, Kula L, Hacisalihoglu HH (2009). Harmonic curvatures and generalized helices, Chaos, Solitons and Fractals, 40: 2590-2596.
Chouaieb N, Goriely A, Maddocks JH (2006). Helices. PNAS, 103: 9398-9403.

Izumiya S, Takeuchi N (2004). New special curves and developable surfaces, Turk. J. Math., 28: 531-537.
Kocayigit H, Önder M (2007). Timelike curves of constant slope in Minkowski space E_{1}^{4}, BU/JST, 1: 311-318.
Kula L, Yayli Y (2005). On slant helix and its spherical indicatrix, Appl. Math. Comp., 169: 600-607.
Lucas Amand A, Lambin P (2005). Diffraction by DNA, carbon nanotubes and other helical nanostructures. Rep Prog Phys., 68: 1181-249.
Magden A (1993). On the curves of constant slope, YYU Fen Bilimleri Dergisi, 4: 103-109.
Onder M, Kazaz M, Kocayigit H, Kilic O (2008). B_{2}-slant Helix in Euclidean 4-space E^{4}, Int. J. Contemp. Math. Sci., 3: 1433-1440.
Scofield PD (1995). Curves of constant precession, Am. Math. Monthly, 102: 531-537.
Walrave J (1995). Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Faculty of Science, Leuven.
Watson JD, Crick FHC (1953). Genetic implications of the structure of deoxyribonucleic acid. Nature 171: 964-967.
Yang X (2003). High accuracy approximation of helices by quintic curve. Comput Aided Geometric Design, 20: 303-317.

[^0]: *Corresponding author. E-mail: mehmet.onder@bayar.edu.tr.

