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The purpose of this paper is to apply adaptive fuzzy sliding mode control for structurally controlling 

buildings with sliding bearing isolation. Combining fuzzy control and robust control such as sliding 

mode control, reduces fuzzy rule bases complexity and ensures stability and robustness. We use 

Lyapunov theory to develop a self-tuning law. Stiffness uncertainty and time delay is used to 

demonstrate the robustness of our proposed algorithm. The effectiveness of this algorithm is 

demonstrated by simulation results for the Taiwan Chi Chi earthquake in 1999. Simulations show that 

adaptive fuzzy sliding mode control achieves satisfactory results in the application of structural 

control for buildings with sliding bearing isolators. 
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INTRODUCTION 
 
Several hybrid systems have been shown to effectively 
reduce damage to structures due to environmental 
disturbances (such as earthquakes). Hybrid control uses 
the advantages of active and passive control. 
Base-isolation reduces ground motion transmitted to a 
building, whereas active control reduces building 
response. Base-isolation uncouples the structure from 
seismic ground motion using replaceable devices placed 
between the building and ground. The disadvantage of 
isolators is large lateral displacement that may induce 
damage. Since the dynamic behavior of base isolation 
devices, such as frictional-type sliding bearings, is either 
highly nonlinear or inelastic, such nonlinear systems 
require nonlinear control. Structural control in civil 
engineering applications originated in the early 1970s 
(Yao, 1972). Some of the widely used structural control 
methods are LQR optimal control (Yang, 1975), pole 
assignment (Abdel-Rohman et al., 1981), instantaneous 
optimal control (Yang et al., 1987). Recent H2 (Suhardjo 
et al., 1992), H-infinite (Schmitendorf et al., 1994) 
optimal control, sliding-mode control (Yang et al., 1995), 
LQG/LTR (Lu et al., 1998) and fuzzy control (Yeh et al., 
1996) were introduced for structural control problem. 
Lately, the applications to structural and mechanical 
systems are extensively reported using new approaches, 

such as fuzzy, neural network, genetic algorism, etc 
(Anisseh et al., 2011; Banga et al., 2011; Bingol et al., 
2010; Chen, 2006; Chen et al., 2007; Chen, 2009; Chen 
et al., 2009; Chen, 2009; Chen et al., 2010; Chen, 2010; 
Chen et al., 2010; Chen and Chen, 2010; Nataraja et al., 
2006; Pamučar et al., 2011; Tusat, 2011). 

This paper applies adaptive fuzzy sliding mode control 
for structural control of buildings with sliding bearing 
isolation. In industry, systems with complex mechanism, 
nonlinear, and/or ill-defined are difficult to model 
mathematically, but an operator can control and operate 
the system adequately. Operator control strategy is 
based on intuition and experiences, such as, assuming a 
set of heuristic decision rules. The theory of fuzzy logic 
and algorithms evaluates and implements these 
imprecise linguistic statements directly and effectively, 
but difficulties exist in fuzzy control design: (1) the huge 
amount of fuzzy rules for a high-order system makes the 
analysis complex; (2) suitable parameters of membership 
functions must be given by time-consuming trial and 
error procedure and (3) stability analysis tools cannot be 
applied to fuzzy control (Lo et al., 1998). In order to solve 
these problems (Chen, 2006; Hsiao et al., 2005; Liu et al., 
2010) proposed a stability condition for a nonlinear 
structural system based on both linear matrix  inequality  



 
 
 
 
(LMI) transformation and the T-S fuzzy model. Although 
the controller design problem can be transformed into a 
solvable LMI problem, the control approach has to be 
enhanced to be effective for real engineering 
applications. Here, we consider adaptive fuzzy sliding 
mode control (AFSMC) strategies for a real building 
structure with a sliding bearing isolation hybrid protective 
system. 

System parameters are generally difficult to determine 
precisely, but bounds on uncertainty is known. For 
unmodeled dynamics, robust control such as sliding 
mode control is a useful strategy (Hui et al., 1992) that 
provides a systematic approach to solving the problem of 
maintaining stability and consistent performance. Yager 
et al. (1994) determined fuzzy rules based on the sliding 
mode condition. The sliding surface can dominate 
dynamic control behavior and reduce the numbers of 
fuzzy rule base rules. Palm demonstrated that fuzzy 
control can be considered as an extension of the 
conventional sliding mode controller with a boundary 
layer (Palm, 1992). Adaptive fuzzy control (Wang, 1993, 
1994) used a linear combination of fuzzy basic functions 
and tuned consequent parameters adaptively. The 
adaptive law for the method of adaptive fuzzy sliding 
mode control presented in this study is derived from the 
Lyapunov theory. The adaptive law is used to tune the 
centers of the consequences of the membership 
functions. A stable adaptive fuzzy sliding mode control is 
developed for affine highly nonlinear systems (Hwang et 
al., 2001). The desired control behavior is achieved by 
developing an equivalent control using the unknown part 
of the system dynamics and the fuzzy learning model. 
Lhee et al. (2002) described sliding mode-like fuzzy logic 
control with fast self-tuning of the dead-zone parameters 
given parameter variations in the controlled system. 
Fischle et al. (1999) extended the method of stable 
adaptive fuzzy control to a broader group of nonlinear 
plants. They achieved this by using an improved 
controller structure adopted from the neural network 
domain. Their controllers (Palm, 1992; Lhee et al., 2002; 
Fischle et al., 1999) were designed for application to a 
high order single output system. However, since civil 
structures are multi-output systems, the response 
information from sensors may include a wide variety of 
data such as displacements, velocities and accelerations.  

The coefficients of the sliding surface (Palm, 1992; 
Hwang et al., 2001; Lhee et al., 2002; Fischle et al., 1999) 
are selected so that s(t)=0 is Hurwitz. In this study, the 
optimal sliding mode method is used to determine the 
sliding surface. The controller’s sliding surface (Palm, 
1992; Hwang et al., 2001; Lhee et al., 2002; Fischle et al., 
1999) can ensure system stability. Notably, the optimal 
sliding mode method not only ensures system stability, 
but can also adjust the weighting matrices according to 
the control objective. The method discussed in this paper 
is more efficient than other types of controllers ((Palm, 
1992; Hwang et al., 2001; Lhee et al., 2002;  Fischle  et  
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al., 1999; Liu et al., 2010). 

The aim of this study is thus to develop a systematic 
AFSMC design procedure capable of controlling the 
behavior of seismically excited buildings constructed with 
sliding bearing isolation systems. The effectiveness of 
the developed algorithm is illustrated using several 
examples applied to sliding bearing isolated buildings. 
 

 

STRUCTURAL DYNAMICS 
 

Assume that the equation of motion for a base-isolated 
building controlled by actuators and subjected to ground 

excitation g
x  is written as follows: 
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or Equation 1 is represented as follows: 
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where x = [ , ....x x xr1 2 ]
T

R r
 = r-vector with x

i
denoting 

the ith floor displacement relative to base; xb = base 
displacement relative to the ground. Matrices M, C and K 
= r  r mass, damping and stiffness matrices, 
respectively, for the superstructure; l= r-vector denoting 
the influence of the earthquake excitation; mb, cb and kb 
are base mass, damping and stiffness matrices, 
respectively; U(t) corresponds to the actuator forces 
(generated via active tendon system or an active mass 
damper) and f(t) is the forces from the isolators; this is 
only a static model, neglecting the dynamic equations of 
actuators. The frictional force of the sliding bearings is 
given as: 
 
f(t)= mgv(t) (3) 

 
in which mg = the weight of the structural system above 
the sliding bearing and is the coefficient of friction. 

Generally, the coefficient of friction  is 

velocity-dependent. An approximate model for the 
frictional coefficient of sliding bearings using 

Teflon/strainless-steel plates is obtained experimentally 
(Mokha et al., 1990a, b):

  

 

=µm-
µ
f

bxa
e
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  (4) 

 

in which µm, µf and a are constants to be obtained 

experimentally using curve-fitting procedures; and xb is 
the relative displacement of the  sliding  system.  The 



4734          Int. J. Phys. Sci. 
 
 
 

constants  µm, 
µ
f and a depend on the surface condition 

and the pressure of sliding bearings. 
v(t) is the hysteretic component of the sliding bearings 

governed by the equation as follows:  
 

)()(
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vxvvxxDtv
bbby
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where Dy is the yield deformation and , , and  

are the parameters defining the characteristics of the 
hysteresis loop of the frictional force. 

For controller design, the standard first-order state 
equation corresponding to Equation 2 is given as: 
 

X (t)=AX(t) + B(U(t) - f(t)) + E
g
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ADAPTIVE FUZZY SLIDING MODE CONTROL 

 
For a complete account of robust control such as sliding mode control 
theory, the reader can consult the references (Decarlo et al., 1988; 
Utkin, 1992). The basic concept is that the controller changes its 
structures according to the position of the state trajectory with respect 

to a chosen sliding surface. The control is designed to force the state 
trajectory of the system onto the sliding surface and to maintain it 
there. This is accomplished by a high speed switching law. The design 
of a sliding mode controller consists of two steps: (1) The design of 
the sliding surface (2) The design of the control strategy to steer the 
state trajectory to the sliding surface. 

The design of the sliding surface is described in the following. 
Consider the equation of system has the form: 
 

X =AX + BU + BH + F + W (8) 
 

where X(t) is a n state vector, n=2(r + 1), A is a n n system matrix, 

B is a n m matrix, H is a n vector which contains the uncertainty and 
nonlinear of a system and satisfy matching condition , F is an n vector 
which contains the uncertainty and nonlinear of the system, but F do 
not satisfy matching condition. W is an n excitation vector. 

Suppose { x | S(X) = 0 } is the chosen sliding surface, the we have:  

 
S(X)= PX (9) 
 
Consider the nominal system as: 
 

BUAXX  (10) 
 

The optimal sliding modes method (Yang et al., 1995; Utkin, 1992) is 

used for the determination of P. The sliding surface is obtained by 
minimizing the integral of the quadratic function of the state vector as: 

 
 
 
 

I=
0

QXdtX T
  (11) 

 
where Q is a (n n) positive definite weighting matrix. 

The second step is the design of the controller. The controllers are 
designed to drive the state trajectory into the sliding surface S=0. 

 
Define a Lyapunov function V as: 

 

V=0.5S
T

S  (12) 
 
In Equation 8, F is an n vector which contains the uncertainty and 

nonlinear of the system, W is an n excitation vector. Generally, 
system parameters are difficult to be known exactly, but the bounds 
on the uncertainty can be known. 

 

F
F  , 

W
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Let  
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TT
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Let K= + , S =(S
T
PB)

T
, Equation 14 control force U 

=Ueq –Ksgn( S ), stability can be obtained when the following holds: 

 

K +
B

  (15) 

 

denotes the Euclidean norm. 

A drawback to the control law given in Equation 14 is that, it is 
discontinuous and tends to excite high frequency modes of the plant. 
The problem can be alleviated with the insertion of a boundary layer 

about the sliding surface. The characteristic U= f ( S ) of the sliding 

mode controller with boundary layer is linear, but the one of fuzzy 
sliding mode controller is nonlinear.  

A fuzzy sliding mode controller is proposed, in which a fuzzy 
inference mechanism is used to estimate the second part of Equation 

14, that is 
f

u . The range of 
f

u  is [ -K , K] . The fuzzy rule is as 

follows: 
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f
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Fuzzy output 
f

u  can be calculated by the center of area 

defuzzification: 
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Figure 1. A base-isolated six floor building. 

 
 
 

where v=[c1….cl]
T
 is a adjustable parameter vector, ic  is the center 

of membership function and =
l

i
i

T
l

w

ww

1

1 ]....[
 is a firing strength 

vector. 

Assume uf exists a specific fû  which achieves minimum control 

cost. fû  satisfies the sliding mode condition. From Equation 16, 

fû  can be written as follows: 

 

fû =
Tv̂   (17) 

 

where v̂ is the optimal vector which achieves the minimum control 

cost. 
Define the parameter vector as:  

 

v~ = v- v̂   (18) 

 
Let the Lyapunov function for each controller be: 
  

V= )~~1
(

2

1 2
vvs

T
  (19) 

 

where is a positive constant. 

 
Finally, the adaptive law (Yeh, 2011) is obtained as: 
 

i
sPbv   (20) 

 
The adaptive law adjusts the centers of the membership function. 

From the earlier discussed, it can be seen that the traditional fuzzy 
sliding mode controller requires the upper bound of uncertainty. While 
the uncertainty increases, the control cost increases as well. But the 

optimal value of uncertainty can not be obtained exactly owing to the 
unknown of structure or system complexity. Adaptive fuzzy sliding 
mode control proposed in this paper can deal with the problem and 
estimate the minimum control cost. The characteristics of this 
approach is that the controller can be designed so that it estimates 

some uncertainty within the system, then automatically designs a 
controller for the uncertainty. In this way the control system uses 
information gathered on-line to reduce uncertainty, that is, to figure out 
exactly what the real environments are at the current time so that good 
control can be achieved. 

In this work some examples are used to illustrate the adaptive fuzzy 
sliding mode control in isolated buildings. 

 

 
NUMERICAL SIMULATION AND RESULTS 

 
The fuzzy sliding mode controller is used to control 
building with sliding bearing isolations. Figure 1 shows a 
base-isolated six floors building. The nominal value of 
each floor mass is 345600 kg, base mass is 450000 kg, 
stiffness of each floor is 3.1 × 10

8
 Nt/m, damping ratio is 

0.02. The coefficient of friction  for Teflon 
/strainless-steel bearings is given by Equation 3 with 

m
=0.1, f

=0.05, 
a

=20 s/m. The parameter values for 

Equation 4 are =1.0, =0.5, =2, =0.5 and 
Dy=1.2×10

-4 
m. Firstly, the 1999 Taiwan Chi Chi 

earthquake (ew direction) whose peak ground 
acceleration is over 1 g is used as input excitation. 
Figure 2 is the time history of Chi Chi earthquake.  

The optimal sliding mode method is used to determine 
the sliding surface with a diagonal weighting matrix Q; 
Q77=1, Qii = 5 × 10

3
, for i= 1, 2,...6 and Qii = 1, for i= 8, 

9,...14. Figures 3 and 4 show the structural responses of 
uncontrolled and fuzzy sliding mode control systems 
such as the base and the top floor displacement  during  
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Figure 2. The Chi Chi earthquake. 
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Figure 3. The base displacement history of building with sliding bearing. 
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Figure 4. The top floor displacement history of building with sliding bearing. 
 

 

 

 

 

0.00 10.00 20.00 30.00 40.00

time (sec)

-4000.00

0.00

4000.00

c
o

n
tr

o
l 

fo
rc

e
 (

k
n

)

Time (s) 

C
o

n
tr

o
l 
fo

rc
e
 (

k
n

) 

 
 

Figure 5. The control force history of fuzzy sliding mode control. 

 
 
 
Chi Chi earthquakes. As seen from the figures, as 
compared to the case without control, the base and the 

top-floor displacement responses are reduced 
significantly. Figure 5 shows the control  force  sent  to  
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Table 1. Maximum response quantities of building with sliding bearing. 
 

Floor 

No control 

Umax=0 kN 

Control no error 

Umax=2174 kN 

Stiffness +40% 

Umax=2174 kN 

Stiffness -40% 

Umax=2174 kN 

Time delay 30 ms 

Umax=2174 kN 

xi (m) i
x

 
(m/s

2
) xi (m) i

x
 
(m/s

2
) xi (m) 

i
x

 
(m/s

2
) xi (m) i

x (m/s
2
) xi (m) i

x (m/s
2
) 

B 2.68E-01 11.066 1.19E-01 8.7792 1.56E-01 8.7266 1.41E-01 7.9341 2.02E-01 8.8813 

1 7.77E-03 5.0928 2.89E-03 4.6607 3.61E-03 4.747 3.27E-03 4.9528 4.54E-03 5.0426 

2 7.98E-03 6.7986 2.53E-03 4.9707 3.54E-03 5.0731 2.76E-03 5.0102 4.73E-03 5.2476 

3 7.29E-03 6.7512 2.09E-03 3.6555 3.33E-03 4.5918 3.06E-03 4.4755 3.89E-03 5.1132 

4 6.83E-03 6.0155 2.38E-03 3.7513 3.25E-03 4.1997 4.07E-03 3.5907 3.50E-03 4.0271 

5 6.07E-03 5.4851 1.80E-03 3.5419 2.42E-03 4.163 3.75E-03 3.6777 2.74E-03 4.3466 

6 4.63E-03 6.7718 1.60E-03 3.4441 1.84E-03 3.7724 2.71E-03 4.1679 2.77E-03 4.4257 
 

(B: Base, i = 1,2,3,…..,6, the ith floor. 

 

 

 
building due to the Chi Chi earthquake. Therefore, it is 
verified that the proposed s fuzzy sliding mode controller 
could significantly reduce the isolated-building structural 
response due to earthquake. 

To examine the robustness of the self-tuning fuzzy 
robust control, we vary the stiffness of all the floor of the 

building by 40% in design controller and suppose 30 
ms time delay. All maximum response quantities of 

building with sliding bearing are shown in Table 1. x i, i
x

, 
and Umax, are the interstory deformation of each floor or 
base , the absolute acceleration of each floor or base 
and maximum control force, respectively. Table 1 shows 
that the fuzzy sliding mode control can not only reduce 
the deformation of base, but the response of the 
superstructure and the amplitude of floor’s acceleration 
also decreased. Notice that the performance results of 
the fuzzy sliding mode controller are still effective in 
reducing the building structural responses under stiffness 
uncertainty and time delay conditions. This means that 
the fuzzy sliding mode controller is robust. The maximum 
control forces of s fuzzy sliding mode control are rather 
low. They are all small than 9% weight of the 
superstructure. 
 

 

CONCLUSIONS 
 

It is shown that buildings equipped with isolation can 
reduce the interfloor drift and floor absolute acceleration 
from the simulations. The proposed fuzzy sliding mode 
control l not only reduces the base displacement, but all 
the above response quantities.  

The maximum control forces of fuzzy sliding mode 
control are rather low. They are all small than 9% of the 
superstructure weight. Table 1 demonstrates this control 
method can work well in estimation error and time delay. 
It is robust, it can be used for structural control with 
nonlinear, uncertainty and time delay. It can be used in 
practical application. 
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