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Exact eigenvalues and eigenfunctions of the Schrödinger equation with generalized q-deformed Morse 
potential for diatomic molecules have been derived in the framework of the asymptotic iteration method 
(AIM). The obtained solutions have been applied to calculate the energies of bound vibrational levels of 

the lithium molecule in the uA1   state. Compared to AIM previous calculations, our results are 

extremely accurate and are in excellent agreement with those using different approximation techniques. 
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INTRODUCTION 
 
The solution of the fundamental equation of quantum 
mechanics, namely the Schrödinger equation has 
continued to attract interest of physicists and 
mathematicians. Since solving this equation is always a 
complicated problem, different methods have been 
developed to solve this famous equation (Egrifes et al., 
1999; Chao and Lin, 1999; Harun et al., 1999; Shi-Hai et 
al., 1999; Korsch et al., 1982; Rieth et al., 2002; He, 
1999). Recently, a new method called “asymptotic 
iteration method” (AIM) has been developed by Ciftci et 
al. (2003) which found wide applications in physics, 
particularly in exploring and understanding some aspects 
of molecular physics and quantum chemistry (Chabab 
and Oulne, 2010; Al-Dossary, 2007; Bayrak et al., 2007; 
Ateser et al., 2007; Durmus and  Yasuk, 2007). Its 
successes in deriving bound states  of some diatomic 
molecules have led to wide acceptance of the AIM as an 
accurate and easy handling method as compared to the 
other techniques on the shelf, such as the variational 
techniques (Utreras-Díaza et al., 1995; Mazziotti, 2002; 
Kumar,   2009;   Mohyud-Din  et  al.,  2010),  perturbation 
 
 
 
*Corresponding author. E-mail: mchabab@ucam.ac.ma. 

method (Ledoux et al., 2006; Mahasneh and Al-Qararah, 
2010; Xue-Ping et al., 2008),  Nikiforov- Uvanov  method  
(Cüneyt  and Han, 2005; Metin, 2007;  Antia et al., 2010), 
1/N shifted expansion method (Tang and Chan, 1987; 
Sinha et al., 2000) and super-symmetry (Cooper et al., 
1995; Morales, 2004). 

Also, the relevance of several potentials to describe the 
physics of atoms and molecules and interactions of nuclei 
has been investigated. Several works have shown that 
Morse potential proposed in Morse (1929) offers an 
appropriate model to study bound states of diatomic and 
even polyatomic molecules. More recently, the vibrational 
energy levels for the nuclear motion of several diatomic 
molecules have been examined both analytically and 
numerically with Morse potential. However, the accuracy 
of the obtained results seems model or algorithm 
dependent: it is correlated either to the approximation 
method used to solve the Schrödinger equation or to the 
algorithm developed to determine numerical 
eigenenergies. As an illustration, the vibrational spectrum 
of 

7
Li2 molecule has been computed within distinct 

methods: 
 

1. Ley-koo et al. (1995) and Taseli (1998) used a 
confined system in a spherical box of radius l, to examine 
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analytically and numerically the eigenenergies. The 
results of Ley-Koo et al. (1995) were inaccurate because 
they used too large spherical box, as explained in detail 
in Taseli (1998) where Taseli presented impressive 
results which are accurate up to 28 digits.  
2. More recently, Barakat et al. (2006), in a comparative 
study used the AIM method to report the energy levels 
with accuracy only to about to 14 decimals. 
3. Nikiforov-Uvanov method has also been applied to the 
q-deformed Morse eigenvalue problem in Ikhdair (2009), 
where an exact solution comes out naturally. 

 
This discrepancy in the accuracy motivates us to revisit 
this eigenvalue problem for a generalized q-deformed 
Morse potential. We investigate the bound state energy 
eigenvalues and the corresponding wave-functions in the 
framework of the asymptotic iteration method where we 
derive a q-dependent eigenenergies formula. We also 
show that, in the case of simple Morse potential where 
the deformation parameter q is set to 1, our results are 
recorded to 28 significant figures, as in Taseli (1998), 
showing that the AIM approach can be equally accurate 
as the approach used by Taseli, and furthermore, that the 
limited accuracy in Barakat et al. (2006) is mainly due to 
the used numerical algorithm in their calculations. 

The paper is organized as follows: AIM was applied to 
the q-deformed Morse potential and the generalized 
exact solutions of the Schrödinger equation were 
presented. Finally, the obtained results were discussed 
and concluded.  

 
 
ASYMPTOTIC ITERATION METHOD 

 
The radial Schrödinger equation for the central field motion of a 

diatomic molecule (in a spherical potential  is given by: 

 

               (1)  

 

where m is the reduced mass of the diatomic molecule,  the 

reduced Planck’s constant and  the angular momentum quantum 

number with  To study the purely vibrational states of 

diatomic molecules, one has to solve Equation 1 where  
using a model potential like generalized Morse one: 

 

                       (2)  

 

where the parameter  is the energy dissociation parameter 

in Morse (1929) potential which can be expressed  in units , 

the parameters  and  are related to V1, hence, to the 

energy dissociation parameter  and c is a parameter related to  
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the frequency of classical vibrations about the equilibrium position 

 (Ley-Koo et al., 1995).  
In this case, we can simplify Equation 1 by changing the radial 

function  into . Equation 1 becomes: 

 

                    (3)       

 

Equation 3 could also be simplified by substituting   

into the relation (Equation 2) where  and  . It 
transforms into the following form: 

 

              (4)  

 
with, 

 

,                         (5)  

 

where we took   for commodity. 
Equation 4 looks like the Schrödinger equation for the hydrogen 
atom. Therefore, the eigenfunctions of this equation must satisfy 
the boundary conditions: 

 

and                                        (6)  

 
To solve Equation 4 using the asymptotic iteration method as 
proposed in Ciftci et al. (2003), we propose the following ansatz for 
the wave function which undergoes the limits conditions (Equation 
6): 

 

                                               (7) 

 
where f(x) is an asymptotic iteration function to be determined. After 
inserting the relation (Equation 7) into Equation 4, we get the 
differential equation for the function f(x): 

 

                    (8) 

 
with 

 

                                             (9)  

 
and 

 

                                        (10)  

 
The differential Equation 8 has a general solution given in Ciftci et 
al. (2003) of the form:           

 

       (11)                              
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where the  values are obtained from: 

 

                                                   (12)  

 
for sufficiently large n > 0 and for, 

 

           (13a) 

 

,n=1,2,3,…             (13b) 

 
Equation 12 could be solved iteratively for a given starting value of 
x as explained in Ciftci et al. (2003). The obtained solutions define 
the eigenvalues of Equation 4. For n = 20 iterations, the obtained 
solutions are: 

 

, , ,… (14)   

 
In general form, we have: 

 

                                                       (15) 

 
After substituting γ and λ by their values given in Equation 5, we 
obtain:  

 

                                                 (16) 

 
and finally we get the exact eigenvalues of Equation 4, 

 

                      (17) 

 
For V3 = 0, the relation (Equation 17) coincides with the exact 
eigenvalues formula as obtained in the quantum mechanics book of 
Bagrov and Gitman (1990). 
To study the classical small vibrations about the equilibrium position 

, we introduce the frequency:  
 

                                                                      (18) 

 
The energy dissociation parameter in Morse potential can be 

expressed in units  as:  

 

                                                                      (19) 
 

The parameter  in the potential presented in Equation 2 is 

chosen to be equal to , where q is a deformation parameter 

and the parameter  is taken in the form . For q = 1, we  

 
 
 
 
will deal with the simple Morse potential. With these parameters, we 
get from Equation 17 the energies of vibrational levels of diatomic 
molecules depending on the q deformation parameter: 

 

           (20) 

 

in units . 
The direct solution of the differential Equation 8 gives: 

 

              (21) 

 

where   are Laguerre polynomials. Then, we obtain the exact 
eigenfunctions of the Equation 4: 

 

        (22) 

 
where C is the normalization constant. 

 
 
DISCUSSION 
 
Morse potential has shown a great ability in the 
description of diatomic interactions and proven 
successful in molecular physics and laser physics. A 
review of Morse potential problems may be found in 
Ikhdair (2009) work. In this note, we have reanalyzed the 
energy levels and the corresponding vibrational states of 
diatomic molecule Li2 via a q-deformed Morse potential. 
For this, we have solved the radial Schrödinger equation 
by making use of the asymptotic iteration method. In 
Table 1, we show the vibrational spectra of 

7
Li2 obtained 

in the frame by different authors and compared them to 
this present work. We see clearly that the calculation 
performed in Ley-Koo et al. (1995) is surprisingly 
inaccurate.  As to the recently computed eigenenergies in 
Barakat et al. (2006) via AIM method up to 14 digits, they 
are far from being as accurate as Taseli (1998) spectra. 
Besides, the authors of Barakat et al. (2006) based their 
work on a comparative study to Ley-Koo et al. (1995) 
which is inconsistent since it used a too large spherical 
box as explained in Taseli (1998). On the other hand, our 
AIM calculations are extremely precise and present the 
energy levels up to 28 decimals with a full agreement 
with Taseli (1998). One may consider such accuracy as 
being extreme in nowadays molecular spectroscopy, but 
it is an important criterion to discriminate between the 
approximations methods used in the literature. 

Finally, we would like to notice that, although, the AIM 
and the confined spherical box methods are equally 
highly accurate, the latter technique requires a lot of 
computational time, and may even fail for levels close to 
dissociation as the spherical box is increased in size to 
accommodate more energetic vibrations. In fact, unlike 
the AIM, it would seem that a method using such a 
confined spherical box is bound  to  become  inapplicable
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Table 1. Energy levels of 7Li2 computed by Morse (1929), Ley-Koo et al. (1995), Barakat et al. (2006), Taseli (1998) and the present work in the  state with the parameters values Δ = 
34.997, re = 3.10821 and c = 0.616. 
 

N Morse (1929) Ley-Koo et al. (1995) Barakat et al. (2006) Taseli (1998) Present work 

0 -34.4987858673600594 -34.4987858673604677 -34.4987858673600556 -34.4987858673600594336657427779/8 -34.4987858673600594336657427778 

1 -33.5130728062405349 -33.5130728062414320 -33.5130728062405367 -33.5130728062405349029916850016/5 -33.5130728062405349029916850015 

2 -32.5416466840014858 -32.5416466840021528 -32.5416466840014849 -32.5416466840014858416435694488/7 -32.5416466840014858416435694487 

3 -31.5845075006429122 -31.5845075006434506 -31.5845075006429106 -31.5845075006429122496213961197/6 -31.5845075006429122496213961196 

4 -30.6416552561648141 -30.6416552561655102 -30.6416552561648174 -30.6416552561648141269251650141/0 -30.6416552561648141269251650140 

5 -29.7130899505671914 -29.7130899505676886 -29.7130899505671913 -29.7130899505671914735548761322/1 -29.7130899505671914735548761321 

6 -28.7988115838500442 -28.7988115838512790 -28.7988115838500462 -28.7988115838500442895105294738/7 -28.7988115838500442895105294739 

7 -27.8988201560133725 -27.8988201560141817 -27.8988201560133717 -27.898820156013372574792125038/7 -27.8988201560133725747921250392 

8 -27.0131156670571763 -27.0131156670575088 -27.0131156670571784 -27.0131156670571763293996628282/1 -27.0131156670571763293996628282 

9 -26.1416981169814555 -26.1416981169820595 -26.1416981169814555 -26.1416981169814555533331428407 -26.1416981169814555533331428407 

10 -25.2845675057862102 -25.2845675057870984 -25.2845675057862103 -25.2845675057862102465925650769 -25.2845675057862102465925650769 

11 -24.4417238334714404 -24.4417238334716096 -24.4417238334714426 -24.4417238334714404091779295367 -24.4417238334714404091779295367 

12 -23.6131671000371460 -23.6131671000377494 -23.6131671000371455 -23.6131671000371460410892362202 -23.6131671000371460410892362202 

13 -22.7988973054833271 -22.7988973054838091 -22.7988973054833259 -22.7988973054833271423264851272 -22.7988973054833271423264851272 

14 -21.9989144498099837 -21.9989144498102718 -21.9989144498099840 -21.9989144498099837128896762579 -21.9989144498099837128896762579 

15 -21.2132185330171157 -21.2132185330174288 -21.2132185330171161 -21.2132185330171157527788096122 -21.2132185330171157527788096122 

16 -20.4418095551047232 -20.4418095551052090 -20.4418095551047223 -20.4418095551047232619938851901 -20.4418095551047232619938851901 

17 -19.6846875160728062 -19.6846875160729802 -19.6846875160728061 -19.6846875160728062405349029916 -19.6846875160728062405349029916 

18 -18.9418524159213646 -18.9418524159217014 -18.9418524159213639 -18.9418524159213646884018630168 -18.9418524159213646884018630168 

19 -18.2133042546503986 -18.2133042546505699 -18.2133042546503994 -18.2133042546503986055947652655 -18.2133042546503986055947652655 

20 -17.4990430322599079 -17.4990430322602215 -17.4990430322599053 -17.4990430322599079921136097379 -17.4990430322599079921136097379 

21 -16.7990687487498928 -16.7990687487502584 -16.7990687487498924 -16.7990687487498928479583964339 -16.7990687487498928479583964339 

22 -16.1133814041203531 -16.1133814041206413 -16.1133814041203536 -16.1133814041203531731291253535 -16.1133814041203531731291253535 

23 -15.4419809983712889 -15.4419809983712994 -15.4419809983712888 -15.4419809983712889676257964968 -15.4419809983712889676257964968 

24 -14.7848675315027002 -14.7848675315028206 -14.7848675315027016 -14.7848675315027002314484098637 -14.7848675315027002314484098637 

 
 
 
in the vicinity of the dissociation limit. 
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