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This paper deals with the effects of magnetic field on heat transfer in a pulsatile flow. A mathematical 
model is developed to investigate the impact of magnetic field on the velocity and the temperature 
distributions between two concentric ducts. Finite differences method is used in order to solve the 
dimensionless governing equations, and implicit schemes for velocity and temperature are obtained. 
The effects of magnetic field on the velocity are represented by the Hartmann number. It is found that 
the increase of magnetic field leads to eliminate the annular effect of the pulsatile flow. It is also found 
that the velocity can be controlled by the external magnetic field which leads to affect the temperature 
profiles and so the heat transfer that could be improved or reduced by mastering the magnetic field.      
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INTRODUCTION 
 
The study of pulsatile flow has been the subject of 
numerous investigations. The first work dates back to 
1929 when Richardson and Tyler revealed by 
experimental measurements the existence of one of the 
main features of the oscillating flow which is called the 
annular effect. This effect is characterised by the 
presence of velocity maximums near the wall of the pipe. 
Later analyses of Womorsley (1955) and Uchida (1956) 
confirmed this result by analysing the sinusoidal motion 
of an incompressible fluid oscillating in a horizontal pipe. 
Atabek and Chang (1961) studied the unsteady flow in 
cylindrical pipe; they have developed an analytical 
solution for the velocity profile by assuming that  the  flow  

is established with far inputs. 
Yakhot and Grinberg (2003) investigated the influence 

of the pressure gradient frequency on the velocity 
amplitude and the phase difference between the pressure 
gradient and the axial velocity. This phase difference 
varies from 0° for the slow frequencies to 90° for the high 
frequencies. Kakac and Yenner (1973) obtained an exact 
solution in the case of a forced flow between two parallel 
plates. Suces (1981) numerically investigated the 
response functions of the wall temperature and the 
average temperature between a laminar fluid flow and a 
flat plate by using a finite difference method. Zhao (1995) 
performed  numerical  and  experimental   studies   on   a
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laminar air flow oscillating in a cylindrical pipe, heated by 
a uniform heat flux. From temperatures measured on 
several positions and at the inner wall of the heater, they 
obtained a correlation of average Nusselt number. 
Majdalani (2002) determined the exact solution of the 
Navier-Stokes equations governing the pulsatile flow in a 
cylindrical pipe where the pressure gradient was replaced 
by a sum of pulses expressed in terms of Fourier 
coefficients. 

The application of magnetic field to a moving and 
electrically conducting liquid induces both electric and 
magnetic fields. A body force known as the Lorentz force 
is produced as a result of the interaction between the 
induced magnetic and electric fields. This force tends to 
oppose the movement of the liquid which leads to 
decrease the flow rate. Agrawal and Anwaruddin (1984) 
proposed a mathematical model for the effect of magnetic 
field on blood flow through an equally branched channel 
with flexible walls. They found that the magnetic field can 
be used as a blood pump in carrying out cardiac 
operations to cure some arterial diseases such as 
arteriosclerosis and arterial stenosis. Stud et al. (1977) 
examined the effect of a moving magnetic field on blood 
flow, and found that the application of a suitable magnetic 
field increases the blood flow rate.          

In current study, we investigate analytically and 
numerically the effect of magnetic field on velocity and 
temperature distributions in case of pulsatile flow across 
a cylindrical duct. The importance of this study could be 
so sensible in the knowledge of blood behavior when 
subjected to a magnetic field and therefore offering best 
platform to reduce some arterial diseases. Finite 
differences method with an implicit scheme is used in 
order to solve the dimensionless governing equations. 
Velocity and temperature profiles are presented for 
different Womersley and Hartmann numbers. 
 
 
MATHEMATICAL FORMULATIONS 
 
Physical problem 
 
The dynamic and thermal behaviors of a viscous and electrically 
conducting fluid flow between two cylindrical ducts, is presented in 
Figure 1. The fluid flow is subjected to a constant magnetic field 
and a pulsatile pressure gradient parallel to the axis. 
       

 

 

𝜕𝑃

𝜕𝑧
= −𝐴 𝑐𝑜𝑠(𝜔 𝑡) 

 
 
Initially, the internal duct is at a temperature of Tint=400 K, the 
external duct is supposed adiabatic and the fluid is at a temperature 
of 300 K and atmospheric pressure. 
 
 
Governing equations 
 
Simplifying assumptions 
 
1. The  fluid  is  incompressible,  viscous   and   electric   conductor, 
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2. The flow is laminar and axisymmetric, 
3. The energy losses due to viscosity are negligible, 
4. The magnetic field is constant and radial. 
 
Under the mentioned assumptions, the governing equations are: 
 
Continuity equation: 
 

                                                                                       (1) 

 
Momentum equation: 
 

                      (2) 

 
Energy equation: 
 

                                       (3) 

 
By introducing the following dimensionless variables:   
 

, , , , , 

, , ,  

 . 

 
The explicit form of the governing equations can be written as 
follows: 
 

                                                                     (4) 

 
 

 

 

           (5) 
 

                       
       (6) 

 

              (7) 

 
Initial conditions: 
 

t=0  

  

  

 
Boundary conditions: 
 
At the external duct:  
 

   

  

 
At the internal duct: 
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ANALYTICAL SOLUTION  

 
In order to solve the problem analytically, we assume that the flow 
is fully developed: 
 
The governing equations of the fluid flow become: 
 
Momentum equation: 
  

                          (8)     

 
Energy equation: 
 

                      (9) 

 
Due to the axis-symmetry of the problem, the study can be reduced 
to the annular space between the two ducts.  
The dimensionless equations (8) and (9) become: 
 

                          (10) 

 

                           (11) 

 
 
The pressure gradient can be written as: 
 

                                       (12) 

 
The velocity solution is sought in the form: 
 

                                               (13) 

 
By introducing this solution in equation (10), we obtain the following 
modified Bessel equation:  
 

                 (14)  

 
Where the solution is a combination of Bessel functions I0 and K0 of 
first and second kind respectively: 
 

 
 

Where:   

The constants C1 and C2 that are determined from the no slip 
boundary conditions: 
 

                                                                     (15)  

 

                                                                     (16) 

 
 
 
 
In order to ease the form of equations, we pose:  
 

 

 
Therefore: 
 

 (17)  

 
and 
 

                              (18) 

 
Thus, the evolution of the velocity profile can be written as follows:  
 

  

(19) 
                                                                           
In order to solve analytically the equation (11), we assume that the 
temperature solution profile can be written as: 
 

  (20) 

 

With:                                                  

Therefore, we obtain the following differential equation: 
 

                   (21) 

 
By using the following boundary conditions: 
 

                                                                        (22) 

 

                                                                         (23) 

 
The temperature solution profile can be written as: 
 

            (24) 
 

Where:   

 

   

  

  

  



 
 
 
 

 

 
 

Figure 1. Flow field geometry. 

 
 
 
NUMERICAL ANALYSIS   
 
The system of Equation (4) to (7) with the corresponding initial and 
boundary conditions is solved numerically by finite differences 
method using implicit scheme. The obtained solution at the fully 
developed regime will be compared to the analytical solution (19) 
for the axial velocity and (24) for the temperature. 

At each new time, the system of the algebraic equations resulting 
from the FDM discretization have tri-diagonal matrix form which is 
solved by TDMA Algorithm.    
Because the problem of this study is axisymmetric, the 
computational domain is reduced to the mesh grid domain 
illustrated in Figure 2a.   

In the vicinity of the ducts, the mesh is refined by replacing the 
mesh situated near the wall of the internal duct by sub decreasing 
mesh size following geometric sequences of G (Figure 2b). Where 
the sum of sub-mesh sizes is equal to the size of a mesh grid. 
Other meshes that are far from the ducts remain the same size. 

 
 

RESULTS AND DISCUSSION  
 
Figures 3 to 8 show the analytical and numerical 
solutions obtained for the velocity profiles for   

and Ha=0. 
It can be seen that there is a large similarity between 

the analytical and numerical results, which validate the 
numerical method used in this study. Some differences 
exist because the analytic solution takes into 
consideration one-directionality of the problem.  

In order to show the effect of magnetic field on the 
velocity profiles, the following results are shown in 
Figures 9 to 11 without magnetic field (Ha=0) for 

 and different Womersley (Re). 

However, the following results that are shown in 
Figures 12 to 14 illustrate the effect of magnetic field on 
the velocity profiles for a wide range of Hartmann 
numbers (Ha=1, 15, 30).  

This results show that the maximum of velocity in a 
pulsatile flow is situated near the walls of the ducts, which 
is called the annular effect, revealed by experimentally by 
Richardson and others and developed analytically by 
Atabek and Chang (1961). This annular effect increases 

by the increase of Womersley number Re. The Figure 
15 shows the influence of Womersley number on the 
situation of velocity maximums in the annular space 
between the two ducts. 
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In the other hand, it can be seen from Figures 12 to 14 
that the magnetic field acts as a retardant against the 
flow which leads to decrease the flow rate. Furthermore, 
the magnetic field leads to eliminate the annular effect 
which is considered as a characteristic of the pulsatile 
flow. 

The flow area also influences on the velocity profiles by 
eliminating the annular effect as it is shown in (Table 1) 
where the dimensionless radius of the internal duct varies 
from 0.3 to 0.8  

The results show that the decrease in the flow area 
from 0.7 to 0.5 leads to decrease gradually the annular 
effect. Nevertheless, the annular effect is almost absent 
when the flow area is in the vicinity of 0.4 to 0.2.    

Figure 16 illustrates the influence of flow area reduction 
on velocity profile and its impact on the annular effect. 
The reduction of flow area leads to increase the velocity 
as it is shown in Figure 16, where the velocity increases 

from about 0.4 to 1.2 for the same Re, t and Ha. 
However, it can be seen that the velocity maximums are 
in the vicinity of the ducts for the flow areas that vary from 
0.7 to 0.5 and the reduction in the flow area leads to 
reduce the annular effect until its disappearance for the 
flow areas that vary from 0.4 to 0.2 where the velocity 
maximum is situated in the middle of the annular space. 

Figures 17 and 18 shows a comparison between 
results of the vortex profiles obtained by the present 
study and those obtained by Majdalani (2008).  

It can be seen that the results of vortex profiles 
obtained by the present study resemble to the results 
obtained by Majdalani (2008). However, the existence of 
slight differences is due to the fact that Majdalani (2008) 
worked on a pulsatile flow in a rectangular duct.   

The Figure 19 shows the temperature profiles for a 

moderate flow regime (Re=10) and without the 
application of magnetic field (Ha=0). However, the Figure 
20 shows the temperature profiles for the same regime 
but in presence of magnetic field (Ha=15). 

At the light of the results presented in Figures 19 and 
20, it appears that the application of an external magnetic 
field has improved the heat transfer between the two 
ducts. In addition, the velocity can be controlled by 
managing the magnetic field which means that the heat 
transfer can be reduced or enhanced depending on the 
application required. 

 
 
Conclusion 

 
The effect of magnetic field on heat transfer has been 
studied analytically and numerically. An exact solution for 
velocity and temperature distribution across the annular 
space between two cylinders in case of a pulsatile flow is 
developed, which is precious for the knowledge of blood 
behavior when subjected to a magnetic field which will 
lead  to  further  improve  the  reduction  of  some  arterial
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Figure 2b. Scheme of the grid independency analysis. 

 

 

 
    

Figure 2. (a) Computational domain, (b) Scheme of the grid independency analysis. 
 
 
 

 

    

 

 

 

 

 

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Analytical velocity profiles for Re=1. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Analytical velocity profiles for Re=10. 
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Figure 5. Analytical velocity profiles for Re=30. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Numerical velocity profiles for Re=1. 
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Figure 7. Numerical velocity profiles for Re=10. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Numerical velocity profiles for Re=30. 
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Figure 9. Velocity profiles for Re=1, Ha=0. 

 
 
 

Figure.9: Velocity profiles for Re=1, Ha  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.10: Velocity profiles for Re=10, Ha 
 

 

Figure 10. Velocity profiles for Re=10, Ha=0. 
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Figure 11. Velocity profiles for Re =30, Ha=0. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12. Velocity profiles for Re=1, Ha=1. 
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Figure 13. Velocity profiles for Re=10, Ha=15. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 14. Velocity profiles for Re =30, Ha=30. 
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Figure 15. Position of velocity maximums for different Womersley numbers and Ha=0. 

 
 
 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

  
 

Figure 16. Influence of the flow area (from 0.3 to 0.8) on the velocity profiles for Re=20, t=30o, Ha=0. 
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Figure 17. Vortex profiles for Re=10 obtained by the present study. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 18. Vortex profiles for Re=10 obtained by Majdalani (2008). 
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Figure 19. Temperature profiles for Re =10 and Ha=0. 

 
 
 

 

 
 

Figure 20. Temperature profiles for Re=10 and Ha=15. 
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Table 1. Position of velocity maximums for Re =20, t=30o, Ha=0. 
 

Dimensionless radius Position of velocity maximum Percentage 

0.3 0.455 22.14 

0.4 0.551 25.17 

0.5 0.663 32.6 

0.6 0.791 47.75 

0.7 0.849 49.66 

0.8 0.900 50.00 

 
 
 
diseases. The developed analytical solutions for the 
velocity and temperature are shown graphically for a wide 
range of Womersley and Hartmann numbers. The results 
showed that the constant magnetic field imposed to the 
pulsatile flow leads to eliminate the annular effect, which 
is a characteristic of this type of flow. Furthermore, the 
results showed that the velocity could be controlled by 
the external magnetic field and also the temperature and 
so the heat transfer could be reduced or improved by 
mastering the intensity of the magnetic field.      
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