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INTRODUCTION 
 
In recent years, considerable interest in fractional 
differential equations has been stimulated due to their 
numerous applications in the areas of physics and 
engineering (West, 2003). Many important phenomena in 
electromagnetic, acoustics, viscoelasticity, and electro-
chemistry and material science are well described by 
differential equations of fractional order (Miller, 1993; 
Samko, 1993; Podlubny, 1999; Caputo, 1967). A homo-
geneous nonlinear fractional gas dynamics equation can 
be written as follows: 
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with initial condition ( ,0) ( ).u x g x= In case of 1,α = , 

Equation (1) reduces to the classical gas dynamics 
equation (Adomian, 1994; Evans, 2002). The purpose of 
this paper is to obtain analytic solution of this equation by 
DTM. The differential transform method was first 
introduced by Zhou (1986) who solved linear and 
nonlinear initial value problems in electric circuit analysis. 
This method constructs an analytical solution in form of 
polynomial expressions such as Taylor series expansion. 
But procedure is easier than the  traditional  higher  order 
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Taylor series method, which requires symbolic compu-
tation of the necessary derivatives of the data functions. 
The Taylor series method is computationally expensive 
for higher orders. The differential transform is an iterative 
procedure for obtaining analytic Taylor series solution of 
ordinary or partial differential equations. 
 
 
BASIC DEFINITIONS 
 
Here, some basic definitions and properties of the 
fractional calculus theory which can be found in Podlubny 
(1999); Caputo (1967). 
 

Definition 1. A real function ( ), 0,f x x > in the space 

,C Rµ µ ∈ if there exists a real number ,p µ> such that 
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Definition 2. The Riemann–Liouville fractional integral 

operator of order 0,α ≥  of a function , 1,f Cµ µ∈ ≥ −  is 

defined as 
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The properties of the operator J α  can be found in 

Momani (2006), and we only mentioned the following (in 
this case, , 1, , 0f Cµ µ α β∈ ≥ − ≥ and 1γ > − ): 
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The Riemann–Liouville derivative has certain disadvan-
tages, in trying way to model real-world phenomena with 
fractional differential equations. Therefore, we shall 

introduce a modified fractional differential operator D
α
∗

proposed by M. Caputo, in his work on the theory of 
viscoelasticity. 
 

Definition 3. The fractional derivative of ( )f x in the 

Caputo sense is defined as 
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The following two properties of this operator will be used 
in what follows; 
 

Lemma 1. If 1 ,m mα− < ≤ and , 1,
m
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The Caputo fractional derivative is considered here, 
because it allows traditional initial and boundary condi-
tions to be included in the formulation of the problem. In 
this study, we have considered nonlinear fractional gas 
dynamics equation, where the unknown function 

( , )u u x t= is assumed to be a causal function of fractional 

derivatives taken in Caputo sense as follows: 
 
Definition 4. For m as the smallest integer that exceeds

,α  the Caputo time-fractional derivative operator of order 

0,α > is defined as 
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For more information on the mathematical properties of 
fractional derivatives and integrals, one can consult the 
mentioned references. 
 
 
GENERALIZED TWO-DIMENSIONAL DIFFERENTIAL 
TRANSFORM METHOD 
 
DTM is an analytic method based on the Taylor series 
expansion which constructs an analytical solution in the 
form of a polynomial. The traditional high order Taylor 
series method requires symbolic computation. However, 
the DTM obtains a polynomial series solution by means 
of an iterative procedure. The method is well addressed 
by Odibat (2006). The proposed method is based on the 
combination of the classical two dimensional DTM and 
generalized Taylor’s Table 1 formula. 

Consider a function of two variables ( , )u x y , and 

suppose that it can be represented as a product of two 

single-variable functions, that is, ( , ) ( ) ( )u x y f x g y= . 

Based on the properties of generalized two-dimensional 
differential transform (Jang, 2001; Kangalgil, 2009; Ravi, 

2009; Arikoglu, 2009), the function ( , )u x y can be 

represented as: 
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where 

,0 , 1, ( , ) ( ) ( )U k h F k G hα β α βα β< ≤ = is called the 

spectrum of ( , )u x y . The generalized two-dimensional 

differential transform of the function ( , )u x y is given by 
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In case of 1,α = and 1β =  the generalized two-

dimensional differential transform (2) reduces to the 
classical two-dimensional differential transform. Let 

, , ,( , ), ( , ), ( , )U k h G k h V k hα β α β α β and 
, ( , )H k hα β are the 

differential transformations of the functions 

( , ), ( , ), ( , )u x y g x y v x y  and ( , ),h x y  from Equations (2) and 

(3), some basic properties of the two-dimensional 
differential transform are introduced in Table 1. Then,  the 
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Table 1. The operations for the two-dimensional differential transform method. 

 

Original function Transformed function 
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generalized differential transform (3) becomes; 
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The proofs of these properties can be found in Momani 
(2006), Jang (2001), Momani (2007). 
 
 
NUMERICAL EXAMPLE 
 
Here, differential transform method (DTM) will be applied 
for solving nonlinear gas dynamics equation. The results 
reveal that the method is very effective and simple.  
 
Example 1. Consider the following gas dynamics 
equation with the following initial condition 
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Taking the differential transform of (4), leads to; 
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From the initial condition given by Equation (5), we 
obtained; 
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Substituting all ( , )U k h into Equation (2), the series 

solution form will be obtained;  
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As 1,α =  this series has the closed form ,
t x

e
−

 which is 

an exact solution of the classical gas dynamics equation. 
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Example 2. In this example, consider inhomogeneous 
fractional gas dynamics equation 
 

2 2 2 21
( ) (1 ) ,

2
x

u
u t u x

t

α

α

∂
+ + + =

∂
                                        (6) 
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One can readily find the differential transform of (6), as 
follows, 
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From the initial condition (7) we can write; 
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Consequently, substituting all ( , )U k h into Equation (2), 

we obtain the series form solution of Equations (6) and 
(7) as; 
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For special case 1,α = the solution will be as follows; 
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which is an exact solution. 
 
 
 
 
 
 

 
 
 
 
CONCLUSION 
 
In this study, application of DTM to fractional gas 
dynamics equation has been presented successfully. The 
results show that differential transform method is a 
powerful and efficient technique for finding analytic 
solutions for nonlinear partial differential equations of 
fractional order. The obtained results reinforce the con-
clusions made by many researchers about the efficiency 
of DTM. In this study, we used the Maple Package, to 
calculate the series obtained by differential transform 
method.  
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