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Auto-Béacklund transformation and Weiss-Tabor-Carnevale (WTC)-kruskal algorithm are applied for the
coupled Camassa-Holm equation in this paper. Four regular solitons including blow-up waves and
compactons are given by the ansatz method. Then, an auto-Bécklund transformation of the coupled
equation is obtained. Thus, we observe that based on the solitons we get before, some singular solitons

are derived which we have not found before.
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INTRODUCTION

Lots of investigations are implemented into the
generalized form of the coupled Camassa-Holm shallow
water system, which includes integrable problems,
solitonic problems, well-posedness problems, blow-up
phenomena, Cauchy problems, etc. A thorough study is
presented on solitonic structure problems for generalized
form of the coupled Camassa-Holm shallow water
system:

m, +2u m+um_+opp, =0,t>0,xe R,
p, +wp) =0,t>0,xe R,

where m=u—u_,o ==%1.

Equation 1 was recently derived by Constantin and
Ivanov (2008) in the context of shallow water theory. The
variable u(x,t) describes the horizontal velocity of the
fluid and the variable p(x,t) is in connection with the
horizontal deviation of the surface from equilibrium, all

measured in dimensionless units. Partha and Peter
(2006) investigated the geodesic flow equation. Ming et
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Weiss-Tabor-Carnevale

(WTC) test, auto-Backlund

al. (2006) derived a coupled generalization of the
Camassa-Holm equation and its solutions. Henrik et al.
(2006) discussed the negative flow of the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy and its relation to a two
component Camassa-Holm equation. Ziemowit (2006)
investigated a two component supersymmetric Camassa-
Holm equation.

Escher et al. (2007) investigated the well-posedness
problems and the blow-up phenomena for the two
component Camassa-Holm equation. Constantin and
Ivannov (2008) investigated an integrable two component
Camassa-Holm shallow water system. Guilong and Yue
(2003) discussed the Cauchy problem of the two
component Camassa-Holm system. Hu and YIN (2010)
investigated the well posedness and blow up phenomena
for the periodic two component Camassa-Holm equation.
Qiaoyi and Zhaoyang (2011) discussed the global
existence and the blow up phenomena of the periodic two
component Camassa-Holm equation. Guo and Zhou
(2010) derived solutions of a two component generalized
Camassa-Holm system. Guo (2010) derived blow-up and
global solutions to a new integrable model with two
components. Guan and Yin (2010) described the globle
existence and blow-up phenomena for an integrable
coupled Camassa-Holm shallow water system. Jingjing
and Zhaoyang (2011) discussed the blow-up and global



existence for a modified two component Camassa-Holm
equation. Chunxia et al. (2010) described the well-
posedness and blow-up phenomena for a modified
coupled Camassa-Holm equation. Guilong and Yue
(2010) investigated the global existence and wave
breaking criteria for the two components Camassa-Holm.

Chuanxia and Zhaoyang (2011) investigated the global
weak solutions for a two component Camassa-Holm
shallow water system. Kai and Zhaoyang (2005)
discussed the analytic solutions of the Cauchy problem
for coupled shallow water system]. Ming et al. (2006)
investigated the two component generalization of the
Camassa-Holm equation and its solutions. Jibin and
Yishen (2008) discussed the bifurcations of travelling
wave solutions for a two component Camassa-Holm
equation. Zhang and Liu (2010) investigated the stability
of solitary waves and wave-breaking phenomena for the
tow component Camassa-Holm system. David (2009)
investigated the infinite propagation speed for a two
component Camassa-Holm equation. Manwai (2010)
investigated the self similar blowup solutions to the two
component Camassa-Holm equation, he also discussed
the perturbational blow up solutions to the two
component Camassa-Holm equations. The modified
Kudryashov method is employed for the nonlinear heat
conduction equations. By utilization of low energy high-
resolution (LEHR) and low energy general-purpose
(LEGP) collimators, hardware and software filters on the
image quality are shown in the work of Alireza (2001).

The goal of this paper is to implement the WTC-kruskal
algorithm for dealing with solitons problems and finding
solitons that have not described before. Our objective is
to find various types of solutions existing in the following
generalized systems.
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fi@Om = f,Onu_+ f,O)mu+ f,(O),
fon = f,0m, + fOny+ f,0)0m), @

With m=u—u_,n=v—v_ . As for Equation 2, the

normalized equation contains four different solitons
systems. Respectively, they are periodic blow-up waves,
a new form of compactons which we entitled floating
compacton, a blow-up wave with finite amplitude and
singular solitary waves. Take the systems as the initial
condition; it is necessary to launch auto-Backlund
transformations. Through the transformation and via the
four soliton systems given earlier, we extended the
soliton systems to a much extensive and complex range
in the case of soliton initial conditions. Periodic blow-up
waves with compacton or anti-compacton structures in its
wave base are obtained. We also find double collapse to
coexists in kinks and regular solitons.

SOLITONIC STRUCTURES FOR MODEL 2

We now analyze generalized model 2 and try to find the
singular solitonic patterns for existing regular solitons. In
order to do this, we begin with an ansatz method for
achieving regular solitons of model 2. The traveling wave
solution is determined by the expressions

u(x,t) =u(&) =u(x—Dr)
v(x,t) =v(&)=v(x—Dr)

D. Thus, we can simplify model 2 into an ordinary
differential equation.

with constant t and the velocity

DY\ (00t =) — f, Ot + f, Ot . — O+ f(Ouih o+ £,V + i @OWee—f,OW:+ f,(0v:- =0

DY\ ()0 =Vge) = LOW:+ OV = [LOW:+ [OW: + f.(End + SOtz — f O+ f,(Out. =0

We introduce the assumption that model 2 has the
compactons, and solitary pattern solutions taken as:

u(&) = Acos” BE
Ansatz 1. ;
v(&)=Ccos” EE

u(&) = Asin” BS

wW(&)=Csin® EE’
u(&)=Acosh’ BE
Ansatz 3: ] B g
nsatz 3 V( é‘): C Ef

Ansatz 2: {

(3)

(&) =Asint’ B
W& =CsinlY’ EE

Ansatz 4:

Ansatz 1

UH=Axs’ B

Substituting v(é)zCocsﬁEf into ODE 3 yields a model

for both parameters A ,B, C and E.
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[D—k—(B*B>+48—2B*f—2)B>Df,(t)]cos’™ BE + B*(B—1)(B—2)Df,(1)
cos” BE—2Af, (t)cos™ ™ BE+2A’B 487 f,(t) =3B, () +2 f,(t) + Blcos*’ ™ BE
+8A’B*(B-1)f,(t)cos”? BE—4A’B*(B-1)2B—1) f,(t)cos’’* BE ~3A°B*
[28f,(t)+ B—1]cos*’? BE+3A°B* BI2B £, (1) + f,(t) + B—1]cos*’ ' BE =0
[D—k—(E*f*+4B-2E*B—2)E’Df,(1)]cos’ EE+ E*(B—1)(B—2)Df,(1)
cos?? EE—2Cf,(t)cos™  EE+2CE 487 f,(t) = 3B, () + 2 £, (1) + Blcos ™ EE
+8C’E (B -1)f,(t1)cos > EE—4C’E*(B-12B -1)f,(t)cos’ > EE-3C°E* B
[2Bf,(t)+ B—1]cos*’? EE+3C°E* B2 Bf, (1) + f,(t) + B—1]cos*’ T EE =0

From here, it is easy to find the solution: ) = 10£,(t) "y 5E.(0 f2(0) Db
10f.(0 RGO T30 +3 9Df () f, () +1] (5)
. ___Ja\T 2 4 Dt
D30 +3° {oppo e @ e e = DD
v(x,t) = 10£,)_ sec’ /—sz 0 f,@) (x—Dt) 3 1 3
30+3 9D OO +1] Here, Equation 5 denotes the periodic blow-up waves of

generalized model 2.
which shows periodic properties. They are defined in
infinite space sector, and have the form of blow up

phenomena.

Ansatz 2

Appling the ansatz form 2 and solving the differential

Ansatz 3

u(&) = Acosh? BE
v(€) = Ccosh? EE
into ODE 3, yields a system for both A, B, C and E.

After substituting ansatz expression {

system, it is easy to find the following solitary wave
solution.

2Af,(t)cosh” BE + [k — D+ B*DB*f,(t) - 6B*DBf,(t)+4B*Df (t)]cosh” ' BE
—-B*D(B-1)(B-2)f,(t)cosh?? BE— B*(B* — 68 +4)cosh* ™' BE
+B*(B-1)(B~-2)cosh®”? BE—~6A’B*B(B—-2)f,(t)cosh®” ' BE

+6A’B*B(B 1) f,(t)cosh ™ BE-3A°B* B34 —2) f,(t) cosh*’ ™ BE
+3A°B*BBL 1) f,(t)cosh*’? BE=0

2Cf,(t)cosh? EE+[k— D+ B*Dp’ f,(t) —6E*DBf,(t) + 4E*Df,(t)]cosh” ' EE
—E*D(B-1)(B-2)f,(t)cosh’ > EE — E*(B* — 68+ 4)cosh*’ ' EE
+E*(B-1)(B-2)cosh* EE—6C*E*B(S-2) f,(t)cosh’ ' EE

+6CE* B(B—1) f,(H)cosh® 7 EE-3C°E* B33 -2) f,(t) cosh*’ ™ E&E
+3C°E*BBB-1) f,(t)cosh” P EE=0

which admits the solution: It is easy to see that there is a floating compacton of

model 2.
u(x,t)= FACK sech’ [2f3(t)f4 2(t)](x Dr)
() (6) Ansatz 4
v(x,t) = RAUR sech’ [2f3(t)f4 (t)](x Dt) Finally, solitonic structures can be obtained by calculating

5(0) the differential system.



nen = 4]34“(3)

3

esch*[2£,(1) f, 2(1)](x — D)

AG

.00 csch’[2f,(t) f, 2(6)](x — Dt)

v(x,t)

WTC TEST

According to the idea of Weiss, Tabor and Carnevale
procedure (Weiss et al.,, 1983), we seek the auto-
Backlund transformation of Equation 2. The singular

F(@(x,1))=0 {u =u(x,t)
and is
OW(x,1))=0 v=v(x,1)

a solution of the partial differential equation. Inserting a
formal ansatz of the form:

manifold is defined by {

N

w(x,t)=Y FO(p(x.1)

i=0

v =Y 0y (x.0)

k(U ,+2F"p ¢ +F'p

XXX

(6U,+12F"p @ _+6F ¢

XXX

(U +2Fp o _+F'p

XXX

(U XXX + 6 F ”¢X.X ¢.XX.X + 2 F ”¢x ¢.X.X.X.X + F ,¢X.X.X.X.X ))

(V.X.X.X + 6 Q ”W.X.X W.X.X.X + 2 Q ”W.X W.X.X.X.X + Q ,W.X.X.X.X.X ))
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into model 2, where t is in the neighborhood of the
manifold. When balancing the nonlinear term and the
highest partial derivatives term, therefore we may
choose:

{u(x,t) =F ()9, (x.)+F (@)@, (x,)+U(x,1) ®)
v(x0=0 W, (x.0)+Q YW, (x.)+V(x.1)

where {:8/8(0, F"=0"F /3¢’
':a/al// Q(r) :arQ/aWr

solutions  of
y=y(x0) (V(x1)

Equation 2. Substituting Equation 8 into Equation 2, we

obtain:

— U(x,t
and{(p_(p(x’t) { (x )are the two

)+2f,(OU +F'9 +F'p )U,+2F"0. 9 +F'p.)
+ (DU, +2F 9.0, +F'p, )6U +6F 9! +6F'p YU, +2F 0.0 +F'0..)
+(3U +3F 9> +3F'p ) (U, +2F 9. +2F "9 ¢
+fOWU,, +4F"0, 0  +2F "9 0  +2F 00  +Fo )+ f,(OU+F'9 +Fo.)
WU, +2F"p; +2F 9@
+Q2U +2F"p! +2F'p YU, +6F ¢ ¢  +2F'0 @  +F'9. )
+£()((24U +24F 9> +24F ' YU +2F 9 ¢ +F'¢p
YU, +2F 9, +2F"p ¢

XXX + F ,¢X.X.X.X )

”_2

XXX + F ’¢X.X.X.X )

Y +36(U+F'p>+F'p.)°
)+4U +F'9> +F'p, )’

XXX

XXX + F’¢X.X.X.X

KV, +20v v, +0v )+2f,(DV+QW:+Qw )V, +20v v, +0v, )

+ OV, +200, + QW )6V +6Q W +6Qy )V, +20v v, +0v..)

+(3V +3Q0y; +30y ) (V, +20"y  +20y ¥ +0V...)

+ (O, +40 W W, +20W W,  +20W W,  + 0V, )+ [L(DV+Q W] +0v, )

6V, +120"y y, +6Qy IV +20"y; +20"v v  +0V .)

+(2V +20"y +20y IV, + 60"y W +20"v ¥,  +0OV, ..))

+f5(0)((24V +24Q"y [ + 240y )V, +20"y W, + QY ) +36(V + Qv + Qv )’ 9)
V., +20v ¥, +0v IV, +20y; +20w v,  +0v, )+4V+Q0y;+Qv, )
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6

Setting the coefficients of { " in system Equation 9 to

6
X

zero yields an ordinary differential equation for F which
indicates that the nonlinear terms and the third derivative

k
2

By using Equation 10, formula 9 can be simplified to a
linear polynomial of F’,F” F”,..., the setting coefficients

of F/,F”,F”,.. to vanish, from the set of PB models, an

auto-Backlund transformation of nonlinear coupled
Camassa-Holm model constitutes:

{u(x,t) =k(lng)_ +U(x,1) (1)

v(x,t)=K(Iny)  +V(x,t)

U(x,t) s

where ) ?= 25D gatisfies the PB system ,
Vi(x,t)

Y =y(x0)

term in Equation 2 have been partially balanced. By
F(p)=klng
O(y)=Klny

solving it, we have solutions { , where

{k are arbitrary constants, it brings:
K

k3

F”F’ — _EF’” F’F"F"F" — _k_SF(4) F(Z)F(Z)F(Z) — k_zF(ﬁ) F’F'(Z)F(Z)F(Z) — __F(7)
2 6 120 ° ’

720

F’F"F'(Z) =%F<4),FT<2)F<2) =§—;F<5),F/F,F/F<2) :_gFﬁ),F’F'(Z)F’F'(Z) — _k_SF(ﬁ),

120

FF’ =% PP =" FOFOFOF® -k F“),F’F’F’zk—zF“) (10)
6 5040 2
7y — YY), '__k3 ) 12 (2)H(2) _ kz ©) YNH2DNHDNHD2 _ k3 (7)
QQ——Q,QQQQ—ZQ 07070 _EQ 007070 —7—20Q,
Q’Q’Q(Z) :k_2Q<4) Q’Q(Z)Q<2) :k_2Q<5) Q’Q’Q’Q(Z) :_k_3Q<5) Q’Q(DQ’Q(D :_k_3Q<6)
6 24 7 24~ 7 120°

i ”z_ﬁ @ 00 =—kO”.0°0?0?® <z):k_3 ®) Yy, ,:k_z 3)
QO =-,0".00=-k0,07070"0" =7 07,000 =—0

a solution of Equation 2.

SINGULAR SOLITON STRUCTURES

By applying the solitary wave solutions 4, 5, 6 and 7 to
the transformations yield a set of partial differential
equations (PDEs).

{[2 f(OU+klp, +2f,0O0U%._. + [, =0 12
ROV +KW, +2f,0OVy.. +fOW,. =0

[k + 2f2(t)U ]¢x¢xx + fl(t)¢xt¢xxx + fl(t)¢x¢xxt + 2f4(t)U2¢x¢xxxx

+[6f4(t)U2 - ku(t)]¢xx¢xxx + Z‘fl(t)¢xx¢xxt - 2kf4(t)U¢xx¢xxxxx = 0

(13)

[K + 2f2(t)v]y/xy/xx + fl(t)y/xty/xxx + -fl(t)y/xy/xxt + 2f4(t)vzy/xy/xxxx
+[6f4(t)vz - KfZ(t)]y/xxWxxx + Zﬂ(t)WxxWxxt - 2Kf4(t)vy/xxy/xxxxx = 0

21,000, + [,(OD: 0, —[3kUf, (1) =3 (D@0 Do T U(D) +6£,(0DBU R0,
+3Uf, () +6f, (DU @9, —3f,(0kU@,, — f,(Dk@,@,... =0

21, + LOWW,, —BKVEO) =3O, W,V +IVEO +6 £,0O1BVYVLY,.
VO +6f,OVY ., =3 fOKVY, — fOKy Y, ... =0

(14)
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[12Uf,(1) + 24 £, Ok, . — 41, (DP9, +Af,(Dkp, 0, @ +[48UF, (1)

+12f,(0kp.p, 0. +[12Uf,(0) +16£,(0k@. 0, @, +[6Uf,(1)+6£,(0ko, 0, 0
—[12Uf,(t) =24 £, (OIU 9,0, =8 (DU @@, —[12Uf,() =48 f, DIV @9, 0,.,
61,000, ~3 (0K P00, =0 (15)
[12VF, (1) + 24 £, (DKWL, — 4 [,V W, +4f, (DKW, W, W7 +[48VS, (1)
+12f,(OKy v, e, A2V +16£,(O0IKW W, Vo, + V(D) +6 £, (OIKY, W, W,
~[12Vf, () =24 £, OV Y ., =8, (OVW W, — 12V, (1) - 48, OV Y ...

6 f,(OK V. W =3[, (OK WY W\ =0

LU + f,(01120,9., +[54 £,(DU +30 (D100 @, + L [,(OU + f (D160,

H6 (DU 10,0100, P, + [ DD P =3[ (Dk =21 £, (kPP 0%,
S3fOKUGP,, =3[P = 31Dk P, D, P, =0

OV + £OU20 07 +S4F, 0V +30£, WA W +LA0V + £l
HELOV +10f,(OW YW o + [OVW o = 3F(OK =21 [, (DKW W W3,
SBLOKVYY,, =3OV Yl =3 OKWVY W W, =0

24f,(0@.0, +T2f,OU QP —12f,(10ke. @, +[24 f,(DU +36£,(D10} 0. 0.,
Hf0O@0,. ~BfOkgie, 0. —12f,0k@0.0,.. ~[BfHOU+6f,0OKU, ...,
BfOKP.P P —12k0.0. ...~ f,(OkP.P. ... =0

24 [, + 12 [,V —12f,(OKp .y, +[241,(0)V +36 £, OWw, v,
HEOVY,,. —BFOKW Y v, 12, OKW Y.V, ~ B0V +6f,0OKVY, v,
SBLOKYY ... ~RKYy ...~ LOKY,, =0

(17)

As for th [uti ) f system Equati 1210 17 3@
s for the solution of system Equations 12 to 17, 2 3_10at +24Ua =0
769)) fip TOTRERUE=0 )

we suppose that: 3£,(0) LG K)B 424V B =0

o
{(o(x,t) =A+Bexpa(x— A1)
y(x,0)=C+Dexp f(x~51) Via Equation 19, we get the value of «, with the
3KUF, (1) =0

3KVE, (1) =0

where parameters A, B, C and D are given as arbitrary
constants, «,f3,4,6 Will be given exact values in the
following by detailed analysis. Substituting this ansatz
form into Equations 12 to 17 brings Equation 12, 13 and : :
14 which can help with the determination of the values of 20,0 —3f,(0H | 12U, —3f,(0H !
parameters a, §, 4,6 T H0-340 | H0-340

constraint model {

k=l Af (1) +2f,(HU +20°U’ f,(t) =0 (18) ﬂi=—{12wt)_’/3ﬁ(t)hT @:{12%0)—,/3]20%}5
K-BS5f)+2f£,@)V+28Vf,(1)=0 Kf,(0=3£,(0) K, (0-3£,0)
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: ! k+2f,(OU +2a°U?
_ 12Lﬁ(t)+,/3f4(t)HT %_{wgaw /—3]3([)HT 1=kt fZ(t)az;-(tf( JAG)
-3 - _ 1
KO-3.0) H.0-3/,0) 1 5o K+2L0V+28V (1)
g | PLOBRORE | 12V, (0)+3f,0n P B 10
K030 Y KO-340

& and Jin terms of B so that the exact value for 4 gpg
Using Equation 18, we have the relation of o, 3,1,6 J can be obtained:

This relation is regarded as determining A in terms of

L ANLOK -

3k + (2k —6) fo (DU +24 f,(NU° =8 £, (D[ (k = 3) f,(1) + 48 £, (1)U *1U*}
LON2UJF,(0) =Bk =9) £, (1) + 144 £ (1)U *]

—3K + (2K —6) f,(1)V + 24 £,(1)V° = 8 £, (DI(K —3) £, (1) + 48 f,(1)V > IV?)

fl(t)[12V\/f4(t) —\/(3K -9 f,(1) +144 £, (V7]

PNIADILS

By the application of the transformation, we generate a
hierarchy of solutions with increasing complexity where

solitary wave solutions are given:

1 |:12Uf4(t)—«/3f4(t)h T
= 2 k -3
w ety = g [ 12U = BR @R | fo(1) =3 (1) CU e
kf,(t) =3 f,(1) [IZUf4(t) m}
Ae kf, (t)=3 f, (1) + B
1 |:12Vf4(t)—«/3f4(t)H T
- 2 K -3
v (e, = —k || L2l V3L (OH 1P L@ =3 f,(1) V()
Kf,(t)—3f,(t) [IZVf‘,(t)—m} (x-60)
Ce Kfy(t)=3 fq(t) +D

In other parameter values, similar singular periodic blow up wave in different expression is obtained.

2

kfa (D=3 f4 (1)

{IZUﬁ;(t)— S OH

1
} {IZUAO) Jmom]( i

C+ De {

12Vf, (=3 f4 () ] (x_o1)

Kfy (1)=3f4(1)

w ety = )| LU =BLWH [ M) =350 +U(x.1)
kf,(t)=3f,(1) {IZUAO) Jm(x)H] (xodt)
A+ Be kf4(1)=3 f4(1)
1 {lzmm - B0k } LIRS s
_ 2 K -3
V(a0 = K 12VF, ()= 3f,(Dh | f.(1) =3, (1) VY (x0)
Kf, (1) =3 f,(1)



Another hierarchy of solutions with increasing complexity
is generated which should satisfy the constraint

1

kf4(t)_3f4(t)

1

Kf4(t) _3f4(t)

In this way, we have the type of singular kink waves.

u,(x,1) = —k {IZUM’”W} o

b0y =K [12Vf4<r>+m} N
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3kUF(H) =0
3KVF,(1) =0

1

[IZUﬂ(t) +3f,(0H } 5

kf4(t) _3f4(t)

- +U(x,1)

[ Faosnm | R
Aet TV +B

1

|:12Vf4(t) +3f,(Oh T b

Kf4(t) _3f4(t)

1
[12Vf4(t)+~/3f4(t)h T("_‘m
Kfy ()=3 f4 (1)
Ce 4 4

+V(x,1)

+D

1
12U, (031, (OH o »
Ka()314(1)

L2 O+3f,0H F

IZDﬁ(I)hB f.(OH Bi
K, () =31, ()

u,(x,n)=k 1 +U(x,1)
Kf.()=3f,(0) 12%(t)+«/3ﬁ1(t)HT -
A+ K4 @)-3£,(0)
1 ! 2
Ve (OR3f,(0h P
| 12V, &) +3f,0h | CJ D350 }x_&)
12VF,(t) +/3f.(Oh P -3,
v(x)=K Vo) 3,0 -1 N i 1 +V(x,1)

Kf,(H=3f,@)

Conclusions

In this paper, we presented auto-Backlund transformation
and WTC test. An implementation of the methods was
given by coupled Camassa-Holm equation. We obtain
regular solitons, such as compactons and blow-up
solutions at first. By using them as “seed” solutions for
the auto-Backlund transformation, a lot of singular
solutions are obtained. The method can be used in many
other nonlinear equations or coupled ones.

RV AGNEA (t)hf(x_ #
C+ Kiy(0-3£,()
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APPENDIX

H==-3f,(t)+kf,(1)+ 48U2f4(t)
h==3f,(0)+Kf,(t)+ 48V2f4(t)



