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This communication investigates the unsteady flow of viscous incompressible fluid through porous 
medium induced by periodically heated half filled concentric cylindrical annulus placed horizontally. 
The boundaries of the annulus are rotating periodically with different angular velocities in the same or 
opposite directions about their common axis. The governing equations are expressed in terms of 
stream function and vorticity functions. The analytical solutions have been obtained by expanding the 
variables in a power series of the annulus aspect ratio. The expressions for streamlines, temperature 
distribution and rate of heat transfer are obtained and the effects of various parameters upon them have 
been examined. 
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INTRODUCTION 
 
In recent years, the requirements of modern technology 
have stimulated interest in fluid flow studies, which 
involve the interaction of several phenomena. One such 
study is related to the flows of fluid through porous 
medium due to their applications in many branches in 
science and technology, viz. in the fields of agricultural 
engineering to study the underground water resources, 
seepage of water in river-beds, in petroleum technology 
to study the movement of natural gas, oil, water through 
the oil reservoirs and in chemical engineering for filtration 
and purification processes. Such problems have also 
important applications in geo-thermals reservoirs and 
geo-thermal energy extractions. It is obvious that in order 
to utilize the geo-thermal energy to maximum, one should 
have a complete and precise knowledge of the amount of 
perturbations needed to generate flow in geo-thermal 
fluids. Also, the knowledge of quantity of perturbations 
essential  to  initiate  flow  in  the  mineral  fluid  found   in  
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earth’s crust helps, one to utilize minimal energy to 
extract the minerals. In view of this, Havstad et al. (1982) 
studied the convective heat transfer in vertical cylindrical 
annuli filled with a porous medium. Thermal convection in 
a horizontal eccentric annulus containing a saturated 
porous medium using perturbation technique was studied 
by Bau (1984). Stewart et al. (1992) had studied 
convection in a concentric annulus through porous 
media. Also, Barbosa et al. (1994 a) analyzed the natural 
convection in a porous horizontal cylindrical annulus. 
Natural convection flow through porous medium in 
horizontal eccentric annulus had studied by Barbosa et 
al. (1994 b). Barbosa et al. (1995) further studied the 
problem of natural convection in porous cylindrical annuli. 
Lee et al. (1995) presented oscillating flow through 
circular pipe by taking sinusoidal wall temperature. 
Transient free convection about a horizontal circular 
cylinder through porous medium with constant surface 
flux heating has also been studied by Pop et al. (1996). 
Kuznetsov (1996) analyzed non-thermal equilibrium fluid 
flow in a concentric tube annulus through a porous 
medium. Pulsating flow and heat  transfer  in  an  annulus  



 
 
 
 
 
partially filled with porous medium is studied by Guo et al. 
(1997). Johnson et al. (1997) had studied hydrodynamic 
stability of flow between rotating porous cylinder with 
radial and axial flow. Unsteady natural convective flow 
past a moving vertical cylinder with heat and mass 
transfer is studied by Ganesan et al. (2001). Recently, 
Abu-hijleh (2001, 2002) analyzed convection heat 
transfer from a cylinder with porous medium. The effect 
of porous inserts on the natural convection heat transfer 
in a vertical open-ended annulus has been numerically 
investigated by Kiwan and Al-Zahrani (2008). Recently, 
the problem of two-phase unsteady magnetohydro-
dynamic (MHD) flow between two concentric cylinders of 
infinite length has been analysed by Jha et al. (2011) 
when the outer cylinder is impulsively started. 

A few investigations have been reported in literature on 
the flow field in partially filled annulus between porous 
concentric cylinders with the inner one rotating. In this 
paper, we investigate theoretically, the flow in a half filled 
porous annulus with periodic boundary and oscillating 
temperature, when both the inner and outer cylinders are 
rotating. Analytical solutions have been obtained for the 
flow characteristics. The expressions for streamlines 
temperature distributions and rate of heat transfer are 
calculated. Numerical results are presented graphically 
and discussed.     
 
 
MATHEMATICAL ANALYSIS 
 
We consider the motion of a half- filled viscous incompressible fluid 
(Figure 1) between two infinite coaxial periodically rotating 

horizontal cylinders of radii )RR(R,R *
1

*
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along the cylinders. Since cylinder is infinite in 
*z - direction, so all 

physical quantities are independent of  
*z .  Using  cylindrical  polar  
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coordinate, the governing equations for unsteady, two-dimensional, 
laminar flow are 
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where u and v are the velocity components in the radial and 
tangential directions, respectively and q is the temperature, t is the 

time,  is the thermal diffusivity, p is the pressure,  is kinetic 

viscosity,  is density of fluid and k is the permeability parameter. 
The (*) stands for dimensional quantities. The Laplacian operator 


2 is given by 
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The boundary conditions of the problem are  
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Introducing the stream function *(r, , 0) and z- component of the 
vorticity vector as  
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The forms of the velocity component u* and v* in Equation 7 are so 
chosen that the equation of continuity (Equation 1) is satisfied. 
Substituting Equation 7 into Equations 2 to 4 and eliminating the 
pressure term from Equations 2 and 3 we get the following 
equations: 
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The boundary conditions are such that the flow satisfies the no-slip 
condition on the solid walls and zero-shear stress condition on the 
free surface. In the present analysis, free surfaces are assumed. 
The boundary conditions (Equations 6a and 6b) are the usual no-
slip condition at the boundaries. The conditions (Equations 6c) are 

valid when edge effects are not taken into account and we are 
considering the case of moderate rotating velocities and as such 
the edge effects are neglected. Now introducing the following 
dimensionless parameters 
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Equations 8 and 9 are reduce to  
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The corresponding boundary conditions are reduce to 
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Substituting Equation 14 in Equations 11 and 12 and comparing the  

coefficient of identical powers of  , neglecting those of 2, 3 etc. we 
get 
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The corresponding boundary conditions reduce to 
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Now, for the solution of Equations 15 to 18, we seek the asymptotic 
solution for the dependent variables, by a regular expansion in 
terms of A, that is, for A < < 1 
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Substituting Equations 20 to 23 in Equations 15 to 18 and equating 
terms of like power of A, we get 
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The corresponding boundary conditions are  
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The corresponding boundary conditions are 
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Equations 24 to 26, 28 to 30, 32 to 34, 36 to 38 are ordinary 
differential equations and therefore can be solved by direct 
integration with the help of their boundary conditions. The solutions 
are 
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Figure 1. Physical configuration and coordinate system. 
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RESULTS AND DISCUSSION 
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The flow in a half filled porous annulus with periodic 
boundary and oscillating temperature, when both the 
inner and outer cylinders are rotating has been carried 
out in preceding sections. In order to get physical insight 
into the problem, the numerical calculations for the 
distribution of the stream function, temperature profile 
and rate of heat transfer for various  values  of  the  para-

meter have been done.  The behavior of the non-

dimensional stream function  of the fluid with changes 

in the annulus aspect ratio A, the frequency (), the time 

t, the rotation parameter  and the permeability 
parameter k are depicted in Figure 2a to c. 

It is observed that stream function increases with an 

increase in  and t both, while reverse phenomena is 
observed near the boundary of outer cylinder. The stream 
function changes its characteristic in the central region by 

increasing r and A both. It is further noticed that  
increases with increasing the permeability parameter k. 
Now, substituting expressions 46 and 47 in Equations 1), 
the temperature field is given by 
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The temperature profiles for air (Pr = 0.71) are presented 
in Figure 3a.  It is observed that temperature was not 

affected by increasing , while it increases with 
increasing the annular aspect ratio A. It is also observed 
that temperature decreases with increasing t.  

The temperature profiles for water (Pr = 7) are 
presented in Figure 3b. It is observed that temperature 

increases with increasing A and  both, while it 
decreases with increasing t. It is also observed that 
temperature increases with increasing r in both the 
situations [Pr = 0.71 (air) and Pr = 7 (water)]. Now, after 
knowing the temperature field, we can calculate the rate 
of heat transfer at the surface of inner and outer rotating 
cylinders as: 
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Figure 2a. The streem function (Ψ) for Ω = 0.5, k = 0.5, A = 0.3 and ε = 0.2. 

 
 
 

Fig.1(b). The streem function ( ) for 

 = 5, A = 0.3 = 0.2 and t =  / 2
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Figure 2b. The streem function (Ψ) for  = 5, A = 0.3, ε = 0.2 and t = π/2. 

 
 
 
The rates of heat transfer at the surface of inner and 
outer cylinder are presented in Figure 4a and b. The  rate  

of heat transfer increases with increasing  at the surface 
of inner cylinder, while decreases at the surface  of  outer
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Figure 2c. The streem function (Ψ) for  = 5, k = 0.5, ε = 0.2 and t = π/4. 

 
 
 

Fig.2(a). The temperature profiles for

 Pr = 0.71 and  = 0.2
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Figure 3a. The temperature profiles for Pr = 0.71 and ε = 0.2. 

 
 
 
cylinder. The rate of heat transfer for the case of water 
(Pr = 7) rapidly increases with increasing A at the surface 
of   inner   cylinder,   while   it    rapidly    decreases   with  

increasing A at the surface of outer cylinder.  
It is also observed that the rate of heat transfer for the 

case of air (Pr = 0.71) increases with increasing  A  and  t 
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Fig.2(b). The temperature profiles for Pr = 7 

and  = 0.2
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Figure 3b. The temperature profiles for Pr = 7 and ε = 0.2. 

 
 
 

Fig.3(a). The Rate of heat transfer at the surface of inner 

cylinder for = 0.2
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Figure 4a. The rate of heat transfer at the surface of inner cylinder for ε = 0.2. 

 
 
 
both at the surface of inner cylinder, while reverse effect 
is observed at the surface of outer cylinder. It is 
interesting to note that it increases with increasing t at the 

surface of inner cylinder for water (Pr= 7), while reverse 
phenomena is observed at the surface of outer cylinder. 
Furthermore,   when  Pr = 0.71 ( air),  which   means   the  

0.2 

0.2 

0.2 

0.2 



Sharma et al.          1539 
 
 
 

Fig.3(b). The rate of heat transfer at the surface of outer 

cylinder for = 0.2
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Figure 4b. The rate of heat transfer at the surface of outer cylinder for ε = 0.2. 

 
 
 
viscosity is small but the thermal conductivity is finite, the 
heat transfer is greater at the surface of the outer 
cylinder, while, reverse effect may be observed at the 
surface of the inner cylinder. However, when the 
kinematic viscosity is large in comparison to the thermal 
diffusivity (Pr = 7.0, in the case of water), the heat 
transfer reduces at the surface of outer cylinder while, the 
reverse phenomena is observed at the surface of inner 
cylinder. 
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