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An equilibrium system of potentially interacting material points in a nonhomogeneous field is studied 
by numerical simulations, as well as criteria which are needed in order to switch from the quantified 
model to the thermodynamic one. This paper studies the system passing a potential barrier and factors 
which affect the change of the system’s internal energy. These factors include width of the barrier, 
number of material points in the system, as well as initial conditions. The dependence between change 
in fluctuations of energy parameters of the system and the number of material points is also shown. 
The amount of dynamic entropy is estimated. The paper also defines and describes two critical values 
(N1 and N2). If the system includes more than N1 material points, then its dynamics becomes 
irreversible. If the number of material points is greater than N2, then thermodynamic model can be 
used. The results obtained by numerical simulations verified the theoretical conclusions. 
 
Key words: Nonlinearity, classical mechanics, energy, thermodynamics, Lagrange equations, non-holonomic 
constraints, irreversibility. 

 
 
INTRODUCTION 
 
The possibility to derive the laws of thermodynamics, 
statistical physics and kinetics using the laws of classical 
mechanics is still considered as an open question. First 
of all, this is due to the fact that in the nature all 
processes are irreversible and dissipative. However, in 
accordance to the formalism of classical mechanics, the 
dynamics of systems are reversible. It is subject of one of 
the key problems of physics (Ginzburg, 2007; Bohr, 1958; 
Klein, 1961; Prigogine, 1980; Lebowitz, 1999; Zaslavsky, 
1984). Up to the present time, clear criteria for the 
transition to the physics of continuous media are not set. 
For example, it is not possible to determine the exact 
number of elements a system should consist of, in order 
to become thermodynamically applicable, as  well  as  the 

accuracy of any estimation which is done using the laws 
of thermodynamics. The abovementioned problems are 
not solved yet since until recently there was no rigorous 
explanation of irreversibility in the framework of the laws 
of classical mechanics, without introducing probabilistic 
hypotheses (Prigogine, 1980; Lebowitz, 1999; Zaslavsky, 
1984; Smoluchowski, 1967; Cohen, 1998; Klimontovich, 
1995; Kadomtsev, 1995; Sidharth, 2008). Indeed, today 
irreversibility is usually explained by the property of 
exponential instability of Hamiltonian systems and the 
hypothesis of the existence of fluctuations. The main idea 
of this explanation is as follows. According to the 
Poincare theorem on the reversibility of Hamiltonian 
systems, a system’s coordinates in the phase  space  will

 
*Corresponding author. Е-mail: vmsoms@rambler.ru 
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 
License 4.0 International License 



 
 
 
 
be close enough to their initial values in a finite (although 
it can be very large) period of time (Prigogine, 1980; 
Zaslavsky, 1984; Smoluchowski, 1967). But if averaged 
over an arbitrarily small neighborhood of the phase 
space, the system will not return back to its initial position 
because of exponential instability. Arbitrarily small 
fluctuations in the system are equivalent to such 
averaging. Therefore, the existence of fluctuations in 
Hamiltonian systems is a sufficient condition for the 
occurrence of irreversibility. But the hypothesis of a 
roughening of the phase space due to fluctuations 
actually involves statistical laws which are alien to 
determinism of classical mechanics. Therefore, the 
question of justifiability of this hypothesis is still open. 

A lot of attempts to explain the second law of 
thermodynamics on the basis of the laws of classical 
mechanics without the use of statistical hypotheses 
failed, so most probably it is impossible to solve this 
problem in the framework of the existing formalism of 
classical mechanics (Prigogine, 1980; Zaslavsky, 1984). 
This means either that there is no explanation in the 
framework of classical mechanics at all or that the 
formalism of classical mechanics requires expansion, for 
example by removing the limitations under which it was 
built (Prigogine, 1980). 

In order to find an approach to solve the problem of 
irreversibility the dynamics of a system of hard discs has 
been studied firstly. Unlike other authors who studied the 
system of billiards, provided that they are Hamiltonian 
systems (Bird, 1976; Sinai, 1995), we considered the 
billiards in the approach of pair collisions of disks 
(Somsikov et al., 1999; Somsikov, 2004). As a result the 
irreversibility of the system of hard disks was found. It 
turned out that the exchange of momentum between the 
discs plays a key role in irreversibility. The Hamilton’s 
and Lowville’s equations describing equilibration in a 
system were obtained basing on these results (Somsikov, 
2004). But a number of problems still remained. For 
example, the pair interaction in a real system is a special 
case which is valid only for fairly rarefied systems. 
Moreover, the interactions between the system’s 
elements are potential. Therefore, the next step was the 
study of systems of potentially interacting material points 
(Somsikov, 2005).  

It followed from the study of systems of hard discs that 
the mechanism of irreversibility cannot rely on the 
formalism of classical mechanics. Therefore, it was 
decided to look for an answer based on the energy 
equation for systems of potentially interacting elements, 
provided that Newton's laws are valid for each individual 
material point. As a result of these studies it was found 
that the system’s dynamics is irreversible. Irreversibility 
was caused by the mutual transformation between the 
system’s motion energy and its internal energy 
(Somsikov, 2014). But one problem still remains 
unsolved: Why formalisms of classical mechanics are 
reversible,  while  the  dynamics  of  systems  of  material  
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points is irreversible. This contradiction should be 
explained; it was found that in classical mechanics 
irreversibility has been lost while obtaining the Lagrange 
equations for systems of material points because of 
usage of the hypothesis of holonomic constraints 
(Somsikov, 2014). It turned out that this hypothesis 
excludes the possibility of describing the nonlinear 
transformation of energy between different degrees of 
freedom, which is responsible for the irreversibility. 

It turned out that it is possible to explain irreversibility 
using Newton's laws by removing some of the limitations 
of classical mechanics formalism. The mechanics of 
structured particles (SP) was developed and a 
mechanism to explain irreversibility was offered. This 
mechanism was named deterministic as it uses the 
mechanics of SP without any probabilistic principles. The 
essence of this mechanism is as follows (Somsikov, 
2014a; Somsikov, 2014b). 

Newton built the mechanics for an abstract 
structureless material point (MP). Therefore, the external 
forces change only the position of MP. This fact defines 
Newton's second law. But all real bodies are not 
structure-less. Thus the external forces change not only 
the position of a body, but its internal energy as well. The 
internal energy is accounted for the motion of elements of 
the body with respect to its center of mass. This means 
that the dynamics of the system is defined by the 
principle of dualism of symmetry due to the fact that the 
system is not structure-less. The essence of the principle 
is that the dynamics of real bodies is determined by two 
types of symmetry: The symmetry of space and the 
symmetry of the body itself. The principle of dualism of 
energy follows from the principle of dualism of symmetry. 
The principle of dualism of energy claims that the 
dynamics of a real body is defined by splitting the body’s 
total energy into its internal energy and the energy of 
motion. The equation of the body’s motion follows from 
the principle of dualism of energy. This equation takes 
into account both the work needed to change the position 
of the body, and the work than changes the body’s 
internal energy (Somsikov, 2014b). 

Thus, the total energy of the body is an invariant which 
determines the body’s dynamics; the energy of motion 
itself is not an invariant, so the motion of the body’s mass 
center should be determined based on the invariance of 
the total energy. 

According to classical mechanics, a body can be 
represented by a set of potentially interacting MPs 
(Goldstein, 1975; Landau, 1976). This means that the 
equation of motion of the body should be derived upon 
the condition that the motion of each MP is described by 
the laws of Newton. In general a body is an open non-
equilibrium dynamic system. Such system in many cases 
could be considered as it is in a local thermodynamic 
equilibrium state (Klimontovich, 1995; Landau, 1976; 
Rumer and Rivkin, 1977). In this case, the body can be 
represented by a set of  moving  equilibrium  subsystems;  
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each subsystem is in turn a set of potentially interacting 
MPs (Landau, 1976; Rumer and Rivkin, 1977). Let us 
name such a subsystem as a structured particle (SP). 
This means that the dynamics of an open non-equilibrium 
system should be defined based on the assumption that 
the system consists from a lot of SPs. Therefore, first of 
all, the mechanics of SPs should be built in order to 
describe the dynamics of real bodies. 

As it turned out, the equation of motion of a SP allows 
explaining the mechanism of irreversibility without the use 
of probabilistic hypothesis of fluctuations (Somsikov, 
2014a; Somsikov, 2014b). This is because the energy of 
motion is no longer an invariant for a SP, as it was for a 
MP. It has been found that the energy of the SP’s motion 
is transformed into its internal energy in the non-
homogeneous field of external forces. Increase in the 
internal energy is proportional to the gradient of the 
external forces. If the external field is weak enough, then 
the SP remains in equilibrium along its path. At the same 
time its internal energy can increase only, but it cannot be 
transformed into the energy of motion. This is the 
essence of deterministic irreversibility that is such 
irreversibility which follows from the deterministic laws of 
classical mechanics; unlike the irreversibility explained 
within the canonical framework of classical mechanics 
(Prigogine, 1980; Zaslavsky, 1984), the deterministic 
irreversibility does not need the hypothesis of 
fluctuations. Thus, the deterministic mechanism of 
irreversibility is caused by transformation of energy of a 
system’s motion into its internal energy when the system 
is in a non-homogeneous field. The fact that in this case 
the energy of motion is not constant means that the time 
symmetry is broken. However, the sum of the energy of 
motion and the internal energy is constant. Hence it is 
clear that in order to explain the nature of deterministic 
irreversibility for a non-equilibrium system, the following 
should be done: 
 
1. Represent a non-equilibrium system by a set of moving 
relative to each other equilibrium subsystems. 
2. Represent the energy of these subsystems as the 
internal energy and the energy of motion. 
3. Obtain the equation of motion of subsystems directly 
from the dual form of energy, thus preserving the 
nonlinear terms which are responsible for energy 
exchange different degrees of freedom. 
 
Unlike the deterministic mechanism of irreversibility, the 
traditional statistical mechanism refers irreversibly in 
Hamiltonian systems to the hypothesis of the existence of 
arbitrarily small fluctuations. The point is that since the 
Hamiltonian systems are exponentially unstable, then the 
presence of such fluctuations results in irreversible 
dynamics. The presence of fluctuations in these systems 
or in the external limitations is a sufficient condition for 
the irreversibility. 

The deterministic irreversibility is a strong  argument  in  

 
 
 
 
favor of determinism of nature. This is very important; just 
recall the fundamental debates of Bohr and Einstein's on 
determinism and randomness, which took place during 
creation of quantum mechanics (Ginzburg, 2007; Bohr, 
1958;). 

Due to the dualism of energy, the equation of a SP’s 
motion is given by independent micro and macro 
variables. Moreover, micro variables define the motion of 
the MPs relative to the center of mass of the SP, while 
macro variables define the motion of the SP’s center of 
mass itself. Deriving equation of motion of the SP in this 
way takes into account possible transformation of the 
energy of the SP’s motion into its internal energy and 
requires no use of the hypothesis of holonomic 
constraints, which is the basis for deriving the canonical 
equation of Lagrange. Unlike the canonical equation of 
Lagrange, the equation of the SP’s dynamics describes 
the nonlinear transformation of the SP’s motion energy 
into its internal energy; this transformation breaks the 
symmetry of time (Somsikov, 2014a). 

An oscillator passing through a potential barrier was 
studied, and it was found that the condition of holonomic 
constraints eliminates nonlinear terms in the equation, 
which are responsible for breaking of time symmetry 
(Somsikov and Denisenya, 2013). This issue is 
considered in more detail subsequently. 

Existence of deterministic irreversibility leads to the 
concept of "deterministic entropy" (D-entropy) (Somsikov, 
2014a; Somsikov, 2014b). D-entropy is a deterministic 
one, because it strictly follows from the laws of classical 
mechanics without use of the hypothesis of fluctuations in 
a system. It is defined as the relative change in the 
system’s internal energy. Unlike the thermodynamic 
entropy, D-entropy for a system consisting of small 
number of MPs can be both positive and negative.  

The equation of the SP’s motion is nonlinear. It is 
almost impossible to do any analytical analysis in order to 
check the theoretical conclusions following from the 
equation. Hence numerical simulations are the only way 
to check the theoretical conclusions. Numerical 
simulations allow determining the criteria for switching 
from classical mechanics to thermodynamics, statistical 
physics, kinetics, as well as identifying the cases when 
the system is irreversible, depending on the properties of 
the system, etc. 

So, the objective of the paper is to determine the basic 
dynamic properties of a system of potentially interacting 
MPs in a non-homogeneous external field using 
numerical simulations. The estimation of fluctuations of 
the system’s internal energy depending on the number of 
MPs, as well as initial parameters of the system and the 
barrier has been done, dependence of change in the 
system’s internal energy on the barrier’s width, as well as 
D-entropy have been studied. This study made it possible 
to verify the theoretical conclusions about the dynamics 
of a SP, define the criteria needed to switch from the 
deterministic to the thermodynamic model for a system.  



 
 
 
 
In addition, it made it possible to show how the important 
statistical laws of physics may result from the strict laws 
of classical mechanics, as well as define some cases 
when the mechanism of irreversibility is applicable. 
 
 
AN OSCILLATOR PASSING A POTENTIAL BARRIER 
 
Initially, the simplest system, more specifically a one-
dimensional oscillator of two MPs connected by a spring, 
has been considered (Somsikov and Denisenya, 2013). 
The oscillator’s total energy includes the energy of motion 
and the internal energy. These two types of energy are 
given in the independent micro and macro variables. Micro 
variables describe the oscillations, while macro variables 
determine the motion of the oscillator’s mass center. 

It was found that the presence of a non-homogeneous 
external field made the micro and macro variables 
dependent. As a result, mutual nonlinear transformation 
of the energy of motion into the internal energy was taken 
into account. This nonlinear transformation was lost when 
deriving the Lagrange equation because of use of the 
hypothesis of holonomic constraints (Somsikov, 2014b). 
This means that it is impossible to obtain the effects 
resulting from a nonlinear relation between the degrees 
of freedom within the formalism of Lagrange. 

Let us explain on an example of two-body problem, 
how the uses of the hypothesis of holonomic constraints 
excludes the possibility of describing the energy 
exchange between different degrees of freedom. There 
are two ways of obtaining the motion equations of a 
system of two MPs. The first way is a traditional one. The 
motion equation for two MPs in the external field is given 
by Sinai (1995): 
 

 (1) 
 
Here ,  are the external forces, acted on a first and 

second MP;  is the force of interaction of MPs 
Let us add and subtract these equations. As a result, we 
obtain: 
 

 (2) 
 
Where  
Equation (2) can be rewritten as: 
 

 (3) 
 

Where       

Thus, according to the Equation (3), the motion of the 
system in the external field is an independent motion of 
the system’s center of mass and the relative motion of 
MPs. The motion of the center of mass is defined by the 
sum of the external forces applied to it. Relative motion of  
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MPs is determined by their interaction forces and the 
difference between the external forces acting on each 
MP. According to these equations, there are two invariant 
of motion. The first invariant is the energy of motion of the 
system as a whole, and the second invariant is the 
energy of the relative motion of MPs.  

Now consider the derivation of the motion equation for 
a system basing on the energy equation. By 
differentiating the system’s energy with respect to time, 
we get: 
 

 (4) 
 
In general case the variables in Equation (4) cannot be 
separated. The sum is equal to zero not only when each 
term is equal to zero (as it is postulated by the hypothesis 
of holonomic constraints), but each term itself could be 
different from zero while their sum is zero. By regrouping 
the terms of equation (4), we obtain: 
 

 (5) 
 
By comparing this equation to Equation (3), using as the 
variables the velocity of the mass center and the relative 
velocities of MPs, the result obtained is: 
 
 

 (6) 

 
It is equivalent to the following equation: 
 

 (7) 

 
The terms in Equation (6) are grouped so that the first 
term determines the motion of the mass center, while the 
second term determines the change in the internal 
energy. 

Equation (6) is equal to Equation (3) in the next cases: 
When , when , and when external forces 
are linear. The first case is equivalent to the rigid 
connection between the MPs. The second case is 
equivalent to the homogeneity of the external field. The 
third case is associated with a linear dependence of 
external forces on the coordinates. Only in these cases 
the variables are separated. In general case of a non-
homogeneous external field the variables of the Equation 
(6) cannot be separated and the hypothesis of holonomic 
constraints is not valid, that is, Equations (3) and (6) are 
not equivalent. Numerical simulations of an oscillator in a 
non-homogenous field have confirmed this conclusion 
(Somsikov, 2014b). 

As it turned out, in some cases the oscillator can pass 
the potential barrier even if its energy of motion is less 
than the height of the barrier (Figure 1).  

In some cases the oscillator can also reflect, even if  its  
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Figure 1. The filled area corresponds to the cases when the 
oscillator passes the barrier (depending on its initial energy of 
motion and phase). 

 
 
 

 
 
Figure 2. Oscillator’s reflection / passage areas depending on its 
initial energy and position (red fill corresponds to reflection). 

 
 
 
energy of motion is greater than the height of the barrier. 
Moreover, while gradually change the initial phase, it is 
possible to get interchangeable areas where the oscillator 
passes the barrier and where it is reflected (Somsikov 
and Denisenya, 2013) (Figure 2). These effects disappear if 
one neglects the nonholonomic constraints, that is, excludes 
consideration of the nonlinear mutual transformation of 
the oscillator’s energy of motion into its internal energy.  

At the moment when the oscillator is near the potential 
barrier, it is its phase that determines the sign  of  change 

in the internal energy (Figure 3). The result also depends 
on the height of the barrier, the oscillator’s energy of 
motion, and other parameters. Thus, the calculation of 
oscillator’s motion shows the important role of nonlinear 
effects in the dynamics of a system in a non-
homogeneous field. These nonlinear effects can be 
studied only by using the principle of duality of 
symmetries, taking into account the transformation of the 
system’s energy of motion into the energy of motion of 
the MPs relative to the system’s center of mass. 
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Figure 3. Change in the oscillator’s energy of motion (% of its 
initial value) depending on its initial phase. 

 
 
 

 
 
Figure 4. The scheme of numerical simulations of the system 
passing the potential barrier. 

 
 
 
FORMULATION OF THE PROBLEM OF A SYSTEM 
PASSING A POTENTIAL BARRIER 
 
A system of potentially interacting MPs in a 
nonhomogenous field has been considered (Figure 4). 
The initial parameters include the system’s internal 
energy and the energy of motion of its center of mass. 
Coordinates and velocities of the MPs were set randomly. 
Their sums are equal to zero in the center of mass. The 
system is represented by a ball with a certain radius at 
which the potential energy of interaction of the MPs is 

equal to the total kinetic energy of the MPs. 
The dual system of coordinates is used, that is the 

independent variables are the micro and macro variables. 
Microvariables determine the motion of each MP in the 
center of mass, while macro variables determine the 
motion of the center of mass itself. The barrier’s height is 
chosen so that the system passes through it. Change in 
the system’s internal energy, the system’s motion energy, 
as well as D-entropy and other parameters of the 
problem are computed; the independent parameters 
include the number of MPs, the barrier’s height and width, 
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as well as the initial conditions. The results obtained are 
compared with the statistical laws and with the theoretical 
conclusions obtained on the basis of the equations of 
motion of a SP (Somsikov, 2014a; Somsikov, 2014b): 
 

 (8) 

 

Where  is velocity of the center of mass, 

 - MP’s count, ; 

; , 

 - change in the system’s 

internal energy, , 

 - external force acting on ith MP, 

,  , - MP’s coordinates relative to the 
center of mass.  

MPs interaction forces are given by Hooke's law. The 
external field is specified in the form of one period of a 
cosine , 

provided . Hence the forces 

acting on each MP are given by: 
 

 (9) 
 
Where Ub is the barrier’s height; Rb is the position of the 
barrier’s max height; a is the barrier’s width; xi is the 
distance between ith MP and the center of mass; i - MP’s 
count.  According to Equation (9), the force is 
proportional to the barrier’s height, and inversely 
proportional to its width. 

The numerical simulations are done for various initial 
distributions of MPs and parameters of the problem in 
order to determine the nature of the changes in the 
energy of motion and the internal energy of the system, 
depending on the number of MPs and initial parameters. 
 
 
CHANGE IN THE SYSTEM’S INTERNAL ENERGY AS 
A FUNCTION OF THE INITIAL PARAMETERS AND 
THE NUMBER OF MPS 
 
According to the theoretical results, the dynamics of a 
conservative nonequilibrium system, represented by a set 
of equilibrium subsystems in a nonhomogeneous external 
field, should be irreversible due to the transformation of 
the system’s kinetic energy into its internal energy 
(Somsikov, 2014b). A similar conclusion follows from the 
statistical methods of analysis of nonequilibrium systems 
(Landau, 1976; Rumer and Rivkin, 1977). Let us consider 
how much MPs a system should consist of in order to be 
described in terms of empirical equations of 
thermodynamics and statistical laws. 

If the theoretical results derived from  the  equations  of  

 
 
 
 
motion of systems are valid, then the numerical 
simulations should reveal that there is a certain number 
of MPs a system should consist of, such that the 
system’s internal energy can increase only. This number 
(N1) can be taken as a first criterion for the system to be 
equilibrium. Obviously, this number should depend on the 
relative values of the internal energy, the energy of 
motion of the system, the potential barrier’s height. 
Simulations have been done in order to verify existence 
of N1 and study its behavior depending on the 
parameters of the system; the simulations estimated the 
change in the system’s internal energy depending on the 
number of MPs. 

Figure 5 shows the results of 400 experiments for 
different number of MPs. Number of MPs correspond to a 
power of two (4, 8, 16, 32, 64, 128, 256, 512, 1024). 
Initial macro parameters are constant: the mass of the 
system equals 1 kg, the mass of each MP equals to 

, the kinetic energy of the system’s center of mass 

 equals 150 J, the system’s velocity is directed along 
the coordinate axis X. 

The potential barrier is located in the YZ plane and has 
a width along the X axis equal to 0.2 m, the barrier’s 
height equals 130 J, the system’s internal energy equals 
100 J, links rigidity coefficient Uo equals 300000 N/m. 
Initial micro parameters, such that coordinates and 
velocities of the MPs, are set randomly. Each dot in the 
Figure 5 corresponds to the ratio of change in the 
system’s internal energy to its initial kinetic energy 

( ). 
The figure shows that if the number of MPs is greater 

than 64, then the change in the internal energy can be 
positive only. This means that for the given parameters of 
the problem and , the system’s dynamics is 
irreversible. This conclusion is made based on the fact 
that the impossibility of transformation of the system’s 
internal energy into its kinetic energy can be considered 
as the test for irreversibility. Let us name this number as 
the first critical number (N1). It is obvious that N1 
depends on the parameters of the problem, for example, 
on the barrier’s width. 
 
 
AREA OF APPLICABILITY OF D-ENTROPY 
 
In accordance with the law of conservation of momentum, 
the internal energy of a system cannot be transformed 
into its kinetic energy, since it is not possible to change 
the system’s momentum. This means that the system is 
irreversible. 

The concept of D-entropy was introduced into the 
mechanics because of this irreversible energy 
transformation fora system in a nonhomogeneous 
external field. D-entropy equals the ratio of the increment 
of the system’s internal energy to its initial value, as well 
as the entropy of Clausius. Consider a non-equilibrium 
system that can be represented by  a  set  of  SPs  in  the  
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Figure 5. Fluctuations of the system’s internal energy 
subject to the number of MPs. 

 
 
 
approximation of local thermodynamic equilibrium; the 
increment of the D-entropy of this system is proportional 
to the energy of the relative motion of SPs, which is 
transforming into their internal energy. In this case, the 
change in the D-entropy is given by Somsikov (2014a; b): 
 

 (10) 
 
where EL is the internal energy of Lth SP; NL is the 
number of MPs inside the Lth SP; L=1,2,3…,R- number of 
SPs; S - external MPs interacting with kth MP in the Lth 

SP; - the force acting on kth MP of one SP by Sth MP 

of another SP, and - velocity of kth MP. 
Equation (10) is obtained based on the equation of 

motion of a SP, and determines the increment of the SP’s 
internal energy comparing to its initial value. It is valid if 
the SP is in equilibrium along its path. 

In our case L=1, so the Equation (10) is determined by 

a simple formula: . This formula can 

be verified by numerical calculations of  for a 
system passing the potential barrier. 

Figure 6 shows average values of change in the 

system’s internal energy  over its initial kinetic 
energy (100 J), as well as confidence intervals for these 
values. Each confidence interval corresponds to the 
confidence level of 0.99 (400 experiments) and is 
calculated as standard deviation of the value multiplied 
by Student coefficient of 2.6. The values on Figure 6 are 
in fact the changes in D-entropy  up to a constant 
factor. The calculations show that the value will be 
positive at  with the probability of 0.99; for smaller 
number of the  MPs  the  value can  be  negative.  As  the 

number of MPs goes up, the fluctuation tends to zero, 
and even when , it becomes approximately 

equal to 0.1 of the absolute value of . 
A further increase in the number of MPs does not 

change the increment of the internal energy, that is 

 reaches its limit at . If , then : 
. Since a further increase in 

the number of MPs does not affect the change in the 
thermodynamic parameters of the system, then  
can be named as the second critical number (N2). This 
number determines the transition to the thermodynamic 
description for the problem. 
 
 
CHANGE OF THE ENERGY OF THE SYSTEM 
PASSING THE BARRIER 
 
Let us compare fluctuations of the system’s internal 
energy depending on the number of MPs and their 
distribution function, with the law of statistical fluctuations 
of its mean square value. This comparison is a 
convincing proof of the possibility of justification of 
statistical laws based on the laws of mechanics. Let us 
recall the way it is usually proved that the relative 
fluctuation of any additive parameter of a system is 

inversely proportional to , where N is the number of 
elements in the system, on the basis of statistical laws 
(Landau, 1976). 

The internal energy of the system ( ) is an additive 
value. If the system is divided into N subsystems, then 
the average value of its internal energy is equal to the 
sum of the average values of the internal energies of all 
subsystems, that is, . Let us start from  
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Figure 6. Change in the system’s internal energy subject to the 
number of MPs. 

 
 
 
the fact that the internal energy increases in proportion to 
the number of MPs. Then the mean square value of the 
fluctuations of the internal energy equals 

. If the fluctuations in the 
subsystems are independent, 

then . Hence the well-known 

law is obtained: . 
Thus, if the calculated value of the relative fluctuations 

of  varies inversely to , then this fact will serve as 
a proof of both the law of the fluctuations, and the 
possibility of the justification of this law by the laws of 
classical mechanics. 

Figure 7 shows that dots, corresponding to the 
fluctuations of the internal energy, fit the curve 
corresponding to the statistical law of decrease of 
fluctuations in the system with the increase in the number 
of its elements (Landau, 1976). 
This means, firstly, that the numerical simulations of the 
system passing through the barrier are correct, secondly, 
that the dualism of energy is reflected in the statistical 
laws, and thirdly, that the laws of classical mechanics are 
suitable not only for justification of the statistical laws, but 
also for determining the scope of their application 
depending on the parameters of the system. 

The slight difference between the calculated 

fluctuations of  and the approximating line can be 
explained by the fact that the increase in the number of 
MPs results in a change of other parameters of the 

system that affect the value of  (for example, size 
of the system). Another reason for a certain deviation 
from the statistical law may be  the  fact  that  for  a  given 

number of MPs the system cannot be strictly considered 
as an equilibrium one. In general, the study of these 
deviations may be useful to identify the areas of 
applicability of statistical laws in the specific problems of 
dynamics. 
 
 
CHANGE IN THE INTERNAL ENERGY SUBJECT TO 
THE WIDTH OF THE BARRIER 
 
According to the equation of motion of the system, the 

change in the system’s internal energy  nonlinearly 
depends on the micro and macro variables and is 
different from zero only when the scale of 
nonhomogeneity of the external field is about the scale of 

the system. The value of  should increase as the 
difference between the forces acting on different areas of 
the system goes up (Landau, 1976; Rumer and Rivkin, 
1977). This conclusion is checked by calculating the 

dependence of  on the barrier’s width. Figure 8 
shows the results of these calculations. 

The ordinate axis is the ratio of change in the internal 
energy to the initial energy of motion of the system’s 
center of mass. The solid vertical line represents the 
standard deviation of coordinates of MPs (a measure of 
the system’s size). The dotted line represents the 
maximum size of the system (the maximum distance 
between the MPs during the numerical experiment). 

According to Figure 8, there is a decrease in the 
efficiency of transformation of the system’s kinetic energy 
into its internal energy, with the increase in the barrier’s 
width, that is, as gradient of the external field goes  down,  
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Figure 7. Dots: max amplitude of fluctuation of  subject 

to number of MPs. Approximating line is given by , 
where p=3.5, r=110. 

 
 
 

 
 
Figure 8. Change in the internal energy subject to the barrier’s 
width, a. 

 
 
 
then the change in the internal energy tends to zero. The 
law of diminishing is close to power-law dependence. The 
dependence of the internal energy on the gradient of the 
external forces follows from the Equation (8), if we 
expand the external force in the small parameter 
(Somsikov, 2014b). 

All of the results of numerical simulations are obtained 
here only because the calculations were based on the 
concept of deterministic mechanism of irreversibility. 
Previously proposed D-entropy is calculated in 
accordance with this mechanism based on the rigorous 
equations of motion of systems (Somsikov, 2014b). The  



122          Int. J. Phys. Sci. 
 
 
 
D-entropy can be determined only if one uses the 
principle of symmetry dualism and consequent principle 
of energy dualism. The sum of the system’s kinetic 
energy and its internal energy was constant during the 
calculations; this verified compliance with the law of 
conservation of energy. 
 
 
CONCLUSION 
 
Numerical simulations of dynamic parameters of motion 
of an equilibrium system of potentially interacting MPs in 
a nonhomogenous external field revealed the following 
patterns. A critical number of MPs is determined, such 
that the system’s internal energy cannot go down for any 
given initial state of the system. In our case, this number, 
N1 ~102. That is, when the number of SPs is greater than 
N1, then the system’s dynamics becomes irreversible. 
This number specifies the minimum number of MPs in the 
system which is needed in order to apply a concept of D-
entropy . 

Let us note that the value of N>102 is obtained for a 
specific model. In general, the value of N1 should differ 
for a system with different parameters. But the main thing 
is not the exact value of N1, but the fact that it can be 
determined using the laws of Newton. This fact is a 
strong argument for an idea that the laws of 
thermodynamics can be obtained within the frameworks 
of classical mechanics without use of statistical 
hypotheses. Moreover, it supports the idea that the 
statistical laws themselves can be obtained using the 
laws of classical mechanics 

The second critical value (N2) has been found. In our 
case N2=103. The increase in the system’s internal 

energy  stabilizes if the number of its elements is 
greater than 103. In our case asymptotic value of 

.The value of N2 determines the transition 
to the thermodynamic description for the system. 

It is shown that the relative fluctuations of  goes 
down when the number of MPs goes up. The rate of this 

decrease is inversely proportional to . This relation for 
a systemis obtained on the basis of the equations of 
dynamics and this fact is an argument in favor of the idea 
that the statistical laws should be justifiable under the 
laws of classical mechanics. Since the law of fluctuations 
is the basis of statistical physics (Landau, 1976), this fact 
indicates the possibility of justification of statistical laws 
based on the laws of physics. 

The efficiency of transformation of the system’s kinetic 
energy into its internal energy goes down while the 
gradient of the external forces decrease. This 
dependence shows that the change in the internal energy 
is due to non-potential forces which themselves are 
proportional to the gradients of the external forces. 

The numerical simulations carried out on the basis of 
the equation of SP’s motion,  allowed  defining  numerical  

 
 
 
 
criteria for the transition from a dynamic description to the 
thermodynamic model depending on the number of MPs. 
This opens the way for the justification of the laws of 
thermodynamics under the laws of classical mechanics. 

Overall, the results confirm the need to describe the 
dynamics of systems in accordance with the principle of 
dualism of symmetry and use of the equation of SP’s 
motion. Given that the real bodies are structured, it is 
dualism that allows identifying and study the connection 
between the laws of classical mechanics and the 
empirical laws of thermodynamics and statistical physics. 
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