
International Journal of the Physical Sciences Vol. 5 (2), pp. 145-153, February, 2010 
Available online at http://www.academicjournals.org/IJPS 
ISSN 1992 - 1950 © 2010 Academic Journals 
 
 
 
 
Full Length Research Paper 
 

Modification of gravitational field equation and rational 
solution to cosmological puzzles 

 
Ming Yang 

 
Department of Physics, Zhoukou University 266700, China. E-mail: bps267890@qq.com. 

 
Accepted 21 December, 2009 

 
The present article has systematically solved the problem of galaxy formation and some significant 
cosmological puzzles. First a mistake with Einstein’s equation of gravitational field is corrected, next 
space-time is proved to be infinite, cosmic expansion and contraction are proved to be in circles, the 
singular point of big bang is eliminated naturally, celestial bodies and galaxies are proved growing up 
with cosmic expansion, for example Earth’s mass and radius at present increase 1.2 trillion tons and 
0.45 mm respectively in a year, in response to which geostationary satellites rise 2.7 mm.  
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INTRODUCTION  
 
Though general relativity obtains considerable success, 
some significant problems such as the problem of 
singular point, the problem of horizon, the problem of 
distribution and existence of dark matter and dark energy, 
the problem of the formation of celestial bodies and 
galaxies, as well as why celestial bodies burst and earth-
quakes take place, always are not solved reasonably and 
satisfactorily. These problems remaining today imply 
strongly that the fundamental of general relativity has flaw 
and needs perfection further. For this purpose, the 
present paper begins with the definite solution of field 
equation in the background coordinate system, then by 
correcting rationally Einstein’s field equation get these 
problems solved radically. 
 
 
BACKGROUND COORDINATE SYSTEM THE STATIC 
METRIC OF SPHERICAL SYMMETRY 
 
According to general relativity, when gravitational source 
(celestial body) is static and spherically symmetric, in the 
standard coordinate system (Weinberg, 1972; Peng, 
1998), the correct form of invariant interval outside 
gravitational source reads  
 

1
2 2 2 2 2 2 2 22 2

1 1 ( sin )
GM GM

ds d dt dl l d d
l l

τ θ θ ϕ
−

� � � �≡ − = − − + − + +� � � �
� � � �

 (1) 

 
Hereτ is proper time, M  is  the  total  mass  of  gravitational  

source; l  called standard radial coordinate, doesn’t have 
clear physical significance and only in the far field is 
approximately viewed as true radius. In order to describe 
clearly motion of particle and enable general relativity to 
link up with other theories of physics and to compare 
results, it is necessary to transform (1) into the form 
expressed in background coordinates. Hence we take 

( )l l r= . Here r is defined as background coordinates 
(Hou, 1982; Zhou, 1983; Fock, 1964) and refers to true 
radius which are said and used usually. , ,t θ ϕ  are 
standard coordinates and can also be viewed as 
background coordinates, which represent true time and 
angle. In the following we try to determine ( )l l r=  by the 
introduction of an additional transformation equation, and 
such operation is allowed because metric tensor satisfies 
Bianchi identity and if a metric is a solution of field 
equation in one coordinate system it is also a solution 
under arbitrary coordinate transformation.  

According to general relativity the dynamical equation 
of particle outside source is geodesic 

 
2

0

2 . . . 0
d x dx dx dx dx dx
dt dt dt dt dt dt

µ ν λ ν λ µ
µ
νλ νλ+ − =Γ Γ ,                     

                                                                                      (2)                      
 
Where; 0x t=  and indexes , , , , , 0,1,2,3vλ µ σ α β = . 
Proof: according to;  
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2 0
d x dx dx
ds ds ds

µ α β
µ
αβ+ Γ = , we have 

 
2 2 2

2
2 2 2( ) ( )

d x dt d dt dx dt d x d t dx
ds ds dt ds dt ds dt ds dt

µ µ µ µ

= = + =

2
2 0

2( ) ( )
dt d x dx dx dx
ds dt dt dt dt

µ α β µ

αβ− Γ , in addition, 

 

2( )
dx dx dt dx dx
ds ds ds dt dt

α β α β
µ µ
αβ αβΓ = Γ , and adding them 

together yields immediately Equation (2). When a particle 
of mass m is moving along radius in the static 
gravitational field of spherical symmetry, giving 
consideration to the speed, in the far field (weak field) the 
radial component of Equation (2) should reduce to 
relativistic dynamic equation 
 

  2

d dr mGM
m

dt dt r
� �� � = −� �	 

� �� �

                                              (3),                                               

 
Where; m refers to relativistic dynamic mass, namely 

2
0 1m m v= − . Why the radial component should 

reduce to (3) is that (3) stands for the equality of 
gravitational mass and inertial mass and also stands for 
the speed of light is the limit one. In order to enable it to 
reduce to (3) l  and r should satisfy 
 
dl
dr

= 2
1 exp( )

GM GM
l r

− −                                          (4) 

 
The correctness of Equation (4) will be seen later, and it 
is the transformation equation which is introduced to 
determine ( )l l r=  and is equivalent to a coordinate 

transformation of l r→ . The solution of Equation (4) is 
given by  
          

( ) 2 2 3 3
1 2

1 1
( 2 ) 4 2

2 12
l l GM GMIn l l GM C r GMInr GM GM

r r
− + + − = + − − + +⋅⋅⋅ 

 
Here constant 1C  is decided by the continuity of ( )l r on 
boundary of source, and (23) can give out the boundary 
value ( )el r , er denotes source’s radius. Now from (4) we 

see l r=  for r → ∞ . Under transformation of Equation 
(4), (1) becomes (5) which is an exact external solution 
expressed in background coordinates , , ,r t θ ϕ .  
 

( )2 2 2 2 2 2 22 2
1 exp( ) sin

GM GM
ds dt dr l d d

l r
θ θ ϕ� �=− − + − + +� �

� �
 (5)                                                                                                     

 
 
 
 
Note that now ( )l l r=  is already a specific function of r , 
which is determined by the solution of Equation (4).  

In the far field, line element (5) gives out 
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g
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= − + ≈ − + , 
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exp( ) 1

GM GM
g

r r
= − ≈ − ,  
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22 ( )g l r r= ≈ ,  

2 2 2 2
33 ( )sin sing l r rθ θ= ≈ ,  

1
00 2

GM
r

Γ ≈ ,  

1
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GM
r

Γ ≈ ,  
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GM
r

Γ ≈ ,   

1
01 0,Γ ≈   
0
00 0,Γ =  

 
and introducing them into (2) and putting 1µ = , 

0d dθ ϕ= = , 
dr

v
dt

= , we obtain 

 
2

2
2 2(1 ) 0

d r GM
v

dt r
+ − =                                                    (6) 

 
which is just Equation (3). Proof: assume 0,d dθ ϕ= =  

0

21

m
m

v
=

−
, then  
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(1 )
[

d vd dr
m m v

dt dt dt

−−� �� � = +� �	 

� �� �

 

 

2 1 2(1 ) ]
dv

v
dt

−−
2 2

2 3 2 2 1
02 2(1 ) (1 )

d r d r
v m m v

dt dt
− −= − = − , 

compare with (3), we see  
 

2
2

2 2(1 ) 0
d r GM

v
dt r

+ − = . 

 
Consequently, we conclude that (5) is the right line 
element which satisfies requirements completely. 
In addition, as an emphasis, we must point out that using 

directly l r=  in (1) gives another exact solution, namely 
the following (7), which is often used in practice, 



 
 
 
 

1
2 2 2 2 2 2 22 2

1 1 ( sin )
GM GM

ds dt dr r d d
r r

θ θ ϕ
−

� � � �=− − + − + +� � � �
� � � �

                                                                                                

                                                                                     (7)  
 
However, in accordance with (7) the corresponding 
geodesic can’t reduce to (3) in weak field, instead it 
reduces to 
 

2
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d r GM

v
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+ − =                                                  (8) 

 

Proof: from (7) we have 00
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GM
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r
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−
� �= −� �
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g
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ρ ρρ

ρ

∂ ∂ ∂Γ = + − = −
∂ ∂ ∂ −

,  

0
01 2(1 2 )

GM
GM r r
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−
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1
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(1 2 )GM r GM
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−Γ =   

1
01 0,Γ =   

 
And substituting them into (2) and taking 1µ =  and 

0d dϕ θ= =  yield immediately 
  

2
1 1 2
00 112

d r
v

dt
= −Γ − Γ +

2 0 2
01 2 2

2 3
2 (1 )

(1 2 )
GM GM GM

v v
r r GM r r

Γ = − − +
−

, and 

for 
2

1
GM
r

<< .  

 
This equation obviously reduces to Equation (8 ), which is 
not Equation (3 ). It is easily found that Equation (8) not 
only goes against the elementary principle of equality of 
gravitational mass and inertial mass but also leads to 
incorrect conclusion that gravitational field becomes 
repulsive one for a particle whose speed exceeds 
0.58c. Hence Equation (8) must be wrong, and implies 
(7) can not describe high speed and has shortcoming as  

Yang         147 
 
 
 
compared with (5).  

Note that the angle of orbital precession of Mercury 
described by (5) is still the same as that described by line 
element (7) (Peng, 1998), it does not change under the 
transformation of radial coordinates. In a word, (5) is the 
correct line element expressed in background coordinate 
system  
 
 
CORRECTION TO GRAVITATIONAL FIELD EQUATION 
 
It is seen from the above discussions that in the case of 

weak field approximation, 00

2
1

GM
g

r
= − +  and 

11

2
1

GM
g

r
= − but not 11

2
1

GM
g

r
= + , which imply that 

the constant γ  in field equation Rµν = (Tµνγ − 1
)

2
Tgµν

 
needs modification. And now we set out to reconfirm the 
coefficientγ .  
 
Here, Tµν ( )p U Uµ νρ≡ + + pgµν ,  

dx
U

d

µ
µ

τ
≡ , U g Uν

µ µν≡ .   

 
And according to 
 
 2 2ds d g dx dxµ ν

µντ= − = , we conclude 1u
uU U = −   

 
Hence. it follows that the scalar 
 

( ) ( ) 4 3u v uv uT g T g p U U pg g p U U p pµν µν µν µ
µν ρ ρ ρ= = + + = + + = −

 
Note that the following discussions are carried out in 
right-angle coordinate system. Therefore, for weak field 
we may assume g hµν µν µνη= +

 
and 1uvh << , here 

00 1η = − , 11 22 33 1η η η= = = , 0µνη = ( µ ν≠ ).  

 

Then 
1

( )
2

g g g

x x x
ρα ρβ αβµ µρ

αβ β α ρη
∂ ∂ ∂

Γ = + −
∂ ∂ ∂

,  

h hµ µρ
β ρβη=   

h h hµ µρ
µ µρη= = .  

 
Omitting the terms 2( )o h  we can infer that;  
 

, ,R σ σ
µν µσ ν µν σ= Γ −Γ =

1
2 , ,hαλ

µν λ ση + 

1
2

( , , , , , ,h h hλ σ
µ ν µ λ ν ν σ µ− − ) .  
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May as well assume  
 

 ,hσ
µ σ = 1

2
,h µ .                                                  (9) 

    
Differentiating Equation (9) with respect to xν  yields 

, ,hσ
µ σ ν

1
2

= , ,h µ ν . Likewise, , ,hσ
ν σ µ

1
2

= , ,h ν µ . 

Using , , , ,h hν µ µ ν=  and adding up above two 

equations yield directly 

, , , , , ,h h hλ σ
µ ν µ λ ν ν σ µ− − = 0 .  

Hence, we have;   
 

2
2

2

1
2 ( ) 2 [( ) ]

2 2

h p
h T T p U U

t
µν

µν µν µν µ ν µν
ργ η γ ρ η

∂ −∇ − = − = + +
∂

  
It follows that; 
 

22( ) ( )
' ' '

4
p U p

h dx dy dzλ λλ
λλ

ρ ρ ηγ
π ξ

+ + −= −  .  

 

Here, 2 2 2( ) ( ) ( )x x y y z zξ ′ ′ ′= − + − + − , , , 1, 2,3i j k = , 
the terms in the integral sign take the values of 

't t ξ= − . Note that the above retarded solutions can be 
used in general cases of motion of source. Hence, in 

order to get the external metrics 00

2
1

GM
g

r
= − +  and 

2
1jj

GM
g

r
= −  in the case of static spherical symmetry, 

( 0 0 1U U µ
µη= = − , 0jU = ), it must be required that in 

the region of 2 2 2
er x y z r= + + ≥  there exist 

' ' '
p M

dx dy dz dx dy dz
r

ρ
ξ ξ

′ ′ ′ = − = −   and simultaneously 

constant 4 Gγ π= . Since p , ρ  and uvg depend only on 
r , we easily infer  
 

pdxdydz dxdydz Mρ= − = −  .                                  (10)                                  

 
For static field it holds that 0 0jh =  in view of (3), and 

substituting 0 jh  and hλλ  into Equation (9) gives 

 

1
4jih =

j ix x

∞ ∞   

 
 
 
 

2 2 2

11 002 2 2[( )( )]
( ) ( ) ( )i j k h h
x x x
∂ ∂ ∂+ − −

∂ ∂ ∂
j idx dx  

 
Where; 1 2 3, , , , ,i j i k j k x x x y x z≠ ≠ ≠ = = = . And 
again, Bianchi identity can give out in weak field the 
conserved law (Weinberg, 1972; Peng, 1998; Zhou, 

1982) 
, 0T µ

ν µ = .  

Proof:  
 

2
; , , ,( )R R R R R o h Rµ µ µ λ µ λ µ µ

ν µ ν µ λµ ν λν µ ν µ ν µ= + Γ − Γ = + =
 
Hence, 

; ; ; , ,

1 1 1
0 ( )

2 2 2
R R R R R Rµ µ µ µ

ν ν µ ν µ ν ν µ νδ= − = − = − , 

moreover field equation gives R Tγ= −  and  

, , , , , ,

1 1 1
( ) ( )

2 2 2
R T T T T T Rµ µ µ µ µ

ν µ ν ν µ ν µ ν ν µ νγ δ γ γ= − = − = +

. Hence , 0T µ
ν µ = , and for static case, from 

, , ,[( ) ] ( ) 0T p U U pµ µ µ
ν µ ν µ ν µρ δ= + + =  we 

infer 0
p
xν

∂ =
∂

. Considering 2
00( ) 16jjh h Gpπ∇ − = ,

 
we 

see         

2 1
4jih∇ =

j ix x

∞ ∞ 
2 2 2

2
11 002 2 2[( ) ( )]

( ) ( ) ( )i j k h h
x x x
∂ ∂ ∂+ − ∇ −

∂ ∂ ∂
j idx dx 0=  

 

That is to say, vh µ  here is indeed reasonable 

approximate solution of field equation which 
has 4 Gγ π= . 

And again, as a special case of spherical symmetry, 

namely 0
xν
ρ∂ =

∂
, since 0

p
xν

∂ =
∂  we easily infer from (10) a 

very useful result   p ρ= −  which can be regarded as 
the form of pressure in weak field if ρ  is homogeneous. 
Obviously it is too subjective to take pressure for zero 
before, and in fact, by serious calculation we see that 
pressure is negative where matter exists, the place 
where matter exists turns out to be so-called pseudo-
vacuum (Gondolo and Fresse, 2003; Guth, 1981). This is 
a new important result which isn’t in agreement with 
traditional opinion.  
To sum up, we can conclude that in any coordinate 
system gravitational field equation is revised as 
 

1
4

2
R Rg GTµν µν µνπ− =                                             (11) 



 
 
 
 
Where; 4 replaces previous 8− , obviously Equation (11) 
preserves general covariance. Of course, (1) and (5) 
satisfy Equation (11) because both p and ρ  vanish 
outside gravitational source, Equation (11) 
becomes 0Rµν = . 

 
 
APPLICATIONS AND TESTS OF EQUATION (11) IN 
COSMOLOGY 
 
With l  as standard radial coordinate, Friedmann-
Robertson-Walker line element is given by (Weinberg, 
1972; Rong-Gen, 2005)   

 

2 2 2 2 2 2 2 2 2
2

1
( ) sin

1
ds dt a t dl l d l d

kl
θ θ ϕ� �= − + + +	 
−� �

 

 
Substituting the metrics into (11) and using the co-moving 
coordinates yield 
 

 ( )2
24( ) ( )

3
Gda t k a t

dt
π ρ+ = −                            (12)   

 
Consequently k must be negative, cosmos is so far 
proved infinite or open. And again, because of having 
(Weinberg, 1972; Peng, 1998) 
 

; ; ; ; ;( ) ( ) 2 ( ) 2 ( ) 0v
vT nU U U U U U Uαβ µ µ µ

β µ β µ β µ β= = = = =
 
It follows that 3 3( ) 0d a pdaρ + =  and 
 

1
0pd d

n n
ρ� � � �+ =� � � �

� � � �
                                                         (13) 

 
Here, n represents the density of particle (galaxy) 
number. Since ρ  is assumed homogeneous, we may 
use the weak field condition p = −ρ , and substituting it 

into Equation (13) yields 0d ρ = , that is to say,  
 

0p ρ= − =&& or p constρ= − = ,                    (14) 
 
which implies cosmic density and pressure don’t change 
all along and the singular point of big bang did not exist. 
In addition, (13) indicates the mass of galaxy increasing 
with cosmic expansion since nρ  stands for per particle 
mass. And further, the solution Equation (12) is given by 
 

 ( ) sin 2
3
G

a t A t
π ρ� �

= � �� �
� �

.                                            (15)  

 
where A  is a positive constant. So far cosmic expansion 
and  contraction  are  proved  to  be  in  circles.  Now   we  

Yang         149 
 
 
 
compute the relation between distance and red-
shift. Taking 0( ) 1R t = , the light from a galaxy to us 
satisfies (Weinberg, 1972; Rong-Gen, 2005)  
 

( )
1

1 z
a t

+ =  and 2 ( )
da

dz
a t

= − .  

 

Here z denotes red-shift. And writing 02
0

4
3

G
q

H
π ρ ≡ , we infer 

from Equation (12); 
   

2
0 0 0/ (1 )(1 )H a a H q z q≡ = + + −& and 2

0 0(1 )k H q= − +  
 
The subscript “0” refers to present-day values. for light 

2 0ds = , then  
 

2( ) (1 )

dt dz dl
a t H kl

= − = −
−

,
0

Z dz
H

= 0

el

 21

dl

kl−
.  

 

el  denotes the galaxy’s invariant radial coordinate. In 

view of luminosity-distance (Weinberg, 1972; Peng and 

Xu,  1998) (1 )Ld z= +
0

el

 21

dl

kl−
, one can figure 

out 
 

2
0 0 0

0
0 0

( 1) 1 ( 1)( 1)1
1 1 1

L

z q q z qz
H d In

q q

+ + + + + −+=
+ + +

      (16)                     

 
As 0z → , expanding the nature logarithm into power 

series of z , (16) becomes 
2

0
0

(1 )
2L

q z
H d z

+= + + ⋅⋅ ⋅ ,  

which is the same result as that obtained via pure 
kinematics. The curved line in Figure 1 (Dai et al., 2005) 

is function image of (16) with 0 0.14q =  and 
1 1

0 70H km s Mpc− −= ⋅ ⋅ . The situation described by the 
curved line agrees well with the recent observations, and 
strongly indicates Equation (11) is correct and the 
modification is quite successful. Note that current 
observations show (Linder, 2003; Hamuy, 2003; Alcaniz, 

2004) 0
0 2

0

4
0.1 0.05

23
G

q
H

π ρ Ω
= ≡ = ±   The spots in the 

Figure 1 represent galaxies (Dai et al., 2005), Distance-

Modulus is equal to 5lg 25Ld +  ( Ld  is in Mpc). 
Next we calculate “our” cosmic age, namely the time 

from last ( ) 0a t =  (t may as well take 0) to today. Writing 

0 0( )H t H= ,   from   2 2
3 3

a G G
H ctg t

a
π ρ π ρ� �

= = � �� �
� �

& ,    0q  takes 
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Figure 1. Recent Hubble figure 
 
 
 
0.14, “our” cosmic age is given by; 
 

 
1

0
0

0 0

=
tg q

t
H q

−

= 101.37 10 a× ,                            (17) 

 
Which agrees with observations (Cayrel et al., 2001). 
Besides, we can also solve how a galaxy’s mass changes 
with time. Writing a galaxy’ mass ( )m t , 

from 3( ) ( )const Nm t a tρ = = , in which N is a 
proportional coefficient, we conclude 
 

1 2
3 3

1 2

( ) ( )
( ) ( )

m t m t
a t a t

=  ,                                                        (18)  

 
which shows that galaxies can grow up without mergers, 
and conforms recent observations (Genzel et al., 2006). 
When (18) is applied to the earth of today, the increase of 
the earth’s mass 0m in a year is calculated as; 
 

3
140

0 0 0 03
0

( 1)
[ 1] ( ) 3 12.46 10

( )
a t

m m t H m
a t

+
∆ = − ≈ = × kg,   

 
Correspondingly its radius will expand 

0 0.45H r⊕ = mm. 

As for the motion in a central field, from Newton’s law 

one has 
2 2

2

4 r GM
T r
π = , where r is the radius of orbit, T is the 

round period, M is the mass of central body. And hence, 
due to the change of centre body mass M , from t  to 
t t+ ∆  the round radius will change 
 

( ) 2 ( )
[ 1]

( ) 3 ( )
a t t a t t

r r r T
a t Ta t
+ ∆ + ∆∆ = − + ∆ .                                     (19)  

 
For   geostationary   satellite    round    Earth    of    today,                     

 
 
 
 
neglecting 0T∆  its radius will increase 0 2.7r∆ = mm in a 
year from (19). Observations show Moon’s orbit radius 
now increases 0.38 cm a year, thus from (19) we infer that 
the round period 0T  of Moon will slow 0.0001s a year today. 

To sum up, it is seen that (18) and (19) determine the 
formation of celestial bodies and galaxies, and of course, 
some details need further complements.  
 
 
Exact interior solution of Equation (11) and 
mechanism of celestial body’s expansion 
 
In the case of static spherical symmetry, inside a celestial 
body (gravitational source), with l  as standard radial 
coordinate the exact interior solution of Equation (11) is 
easily given by (Weinberg, 1972; Peng, 1998). 
 

2ds = −
1

( )

2

( )
exp C + ( ) 1

el r

l

l
f l dl

l
ω −� �� �+	 
� �

� �	 
� �


2dt
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1

G l
l

ω −
� �+ +� �
� �

2 2 2 2 2( sin )dl l d dθ θ ϕ+ +            (20) 

 

Where; 2

0
( ) 4 ( )

l
l l l dlω π ρ≡  , 3

2( ) 4 ( ) ( )
G

f l l p l l
l

π ω� �≡ +� �. 

Constant
2

2
[1 ]

( )e

GM
C In

l r
= − , it makes sure 00g  is 

continual on the boundary of the celestial body. Note that 

as scalar = ( )= ( )l rρ ρ ρ% , = ( )= ( )p p l p r% , and outside 
gravitational source both p and ρ  vanish, namely 

( ) ( )=0r p rρ =% %  for er r> . In order to determine the 
interior form of (20) in background coordinates, Equation 
(4) is naturally extended as inside gravitational source  
 

dl
dr

= ( )
1

G l
l

ω+ exp ' ' 'G dx dy dz
ρ
ξ

� �−� �
� �
 .                             (21)                          

 
Obvious under the transformation of Equation (21), line 
element (20) turns into  
 

 
2ds = −

1
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2
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exp C + ( ) 1

el r

l

l
f l dl dt

l
ω −� �� �+ +	 
� �

� �	 
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exp 2 ' ' 'G dx dy dz
ρ
ξ

� �−� �
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2 2 2 2 2( sin )dr l d dθ θ ϕ+ + .   (22)                      

 
Here ( )l l r=  is a specific function of r , which is 
determined by Equation (21). Line element (22) is just the 
exact solution looked for, expressed in background 
coordinate , , ,r t θ ϕ .   Note  that  the  solution  of  Equation 



 
 
 
 
(21) need meet the initial condition ( )0 0l = . Because 

there is no gravity acceleration at the coordinate origin, 

00dg dr must be zero, from (22) one has 
     

00 000
dg dgdl
dr dr dl

= =
1 1

( )

2

( ) ( )
( ) 1 exp C + ( ) 1

el r

l

dl l l
f l f l dl

dr l l
ω ω− −� �� � � �= + +	 
� � � �

� � � �	 
� �
 ,  

 

which indicates ( ) 0f l =  at coordinate origin, that is to 

say, ( )0 0l l= = . And if 3

3
4 e

M
const

r
ρ

π
= = , then 

 2
3

3
' ' '

2 2e e

M M
dx dy dz r

r r
ρ
ξ

= − , 2 3
30

( ) 4 ( )
l

e

M
l l l dl l

r
ω π ρ= = ,  

 
The solution of Equation (21) is easily given by 
 

3
2

3 31e

e e

r GM GM
In l l

GM r r

� �
+ + =� �� �

� �
2

3 5
3 3

1
406 e e

GM GM
r r r

r r

� �� �
	 
+ + + ⋅⋅⋅� �
	 
� �� �

3
exp( )

2 e

GM
r

−          (23) 

 
Though ρ , generally speaking, is not constant, we may 
take its average value in practice for the convenience of 
calculation. For example, on the surface of Sun 

86.96 10er r= = × m, M = 301.99 10× kg, using (23) we 
can work out the surface’s 

8( ) 6.96 10el l r= = × m 1720− m, which is highly equal to 
Sun’s radius. And likewise, we can work out 

6371 0.00038l km km= −  on Earth’s surface, and this 
almost equals Earth’s radius (6371 km). 

So far, using the continuity of ( )l l r=  not only we can 
determine the constant 1C  but also can calculate the 
deflected angle of light line on the surface of Sun. For 
photon’s propagation outside Sun from (5) we have  
 

( )2 2 2 2 2 2 22 2
0 1 exp( ) sin

GM GM
ds dt dr l d d

l r
θ θ ϕ� �= = − − + − + +� �

� �
     

( )
1

2 2 2 2 2 22 2
1 1 sin

GM GM
dt dl d d l

l l
θ θ ϕ

−
� � � �= − − + − + +� � � �
� � � �

.  

 
Similar to former calculation, the deflected angle is given 

by
4 4

1.78''
( )e

MG MG
l l r

α = = = , which is more consistent 

with observational result (1.89'' )  than  former  theoretical  
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value
4 4

1.75''
e

MG MG
r r

α = = = .  

On the other hand, the conserved law gives out 
 

( ) ( ) 13 22 ( )
2

dp
G p l p l lG l

dl
ωρ π ω

−� �= + + +� �
� �

.                            (24)               

 
On the boundary the gravity acceleration should be 
continual, according to (2), using (4), (5), (21), (22) we 
have 
 

1
00( )Γ

er r+=
1
00( )= Γ

er r−=
, that is,  

 

11 00( )
dg

g
dr er r+=

11 00( )
dg

g
dr

=
er r−=

,  

 

 It follows that; 2
1

dl d GM
dr dl l
� �� �−� �	 


� �� �

 

er r+=

1
( )

2

( )
exp C + ( ) 1

el r

l

dl d l
f l dl

dr dl l
ω −� �� �� �� �= +	 
� �� �

� �	 
� �� �� �
 er r−=  

 
And after simplifying further, this becomes  
 

3[4 ( )] 2 2 ( )l p l l GM M l G lπ ω ω+ − = − + ,     (25)                 
 
which is the boundary condition that p must satisfy, the 
condition determines p negative within celestial body.  

As an emphasis, we must point out that when (1) or (5) 
is applied to a mass point of the surface of the static 

source, it holds that 2 22
0 (1 )

GM
ds dt

l
≥ = − − , which 

indicates that 2
1

GM
l

−  of static source is nonnegative. 

Next let us consider a small volume iV  of mass im  inside 

source, idV  denotes iV ’s change caused from the 
expansion of space-time, in view of Equation (12) we 
have i i idm p dV= − , hence  
 

( )
3

3

( )
( ) ( )

( )
i i

i i i i i
i i

m dV da t
d d p p

V V a t
ρ ρ ρ= = − + = − +                    

                                                                                   (26)         
 
which determines how matter density changes locally. It 
is seen from (26) that when celestial bodies expand with 
cosmic expansion its density may be unchanging if 

0i ipρ + = .  
So far, we deduce that bursts of celestial bodies and 
earthquakes originate from the unceasing accumulation 
of inside matter and the change of its distribution; and it is 
the negative that leads to production of matter. 
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NATURAL SOLUTION TO THE PROBLEM OF DARK 
MATTER 
   
The invisible negative pressure is an important part of 
gravitational source, and it is the negative pressure that 
appears as the form of dark matter and leads to the 
phenomenon of missing mass, this is easily proven as 
follows. 

Speaking generally, within a galaxy the metric field is 
weak field, and when a galaxy is treated as a celestial 
body of spherical symmetry, according to the discussion 
in section 3, within the galaxy ( 0 er r≤ ≤ ) pressure 

0p const= ≠ . And from (10), we 

infer
3

3
4 e

M
p const

rπ
= = − , further we have 

 

00

3p
h G dx dy dz

ρ
ξ
+ ′ ′ ′= − =

( )1 2 2 2

0 0 0
4 6 2

er r r

eG r r dr rdr rdr G pr G prπ ρ ρ ρ π π−− + − − +  
 
According to (2) the gravity acceleration (or gravitational 
field strength) within the galaxy is given by; 
 

1 200
00 2 20

1 2 ( )
2 2

2 2

rdh G Gm r
g Gpr r dr Gpr

dr r r
ππ ρ π= −Γ = = + = +

  

Where; 2

0
( ) 4

r
m r r drπ ρ≡  , and  g may be positive or 

negative since pressure is negative, the negative g  
indicates the direction of acceleration is towards centre. 
And according to (2) the corresponding round orbital 
speed v  satisfies  
   

 2 2 ( )
2

2
Gm r

v gr Gpr
r

π= − = − −                                       (27)   

 
From (27) it is seen that when ( )m r looks even on the 
verge of zero near the centre of the galaxy the speed v  
can become high, too, and this explains so-called missing 
mass. Again, from (27) we get 

2 32 4 ( )rv Gpr Gm rπ= − − , and if v  is a constant 

between 1r  and 2r , differentiating this equation and 
simultaneously using 

2 2 2 1
1 2 13

1

( )( ) 3
( ) 2

2 2 2e

Gm rGm r MG
v r r r Gpr r

r r r
π≤ ≤ = − − = −   yield  
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                                                                                (28)             
 
which is the condition that a  typical  spiral  galaxy  with  a  

 
 
 
  

 

 

 
 
Figure 2. Velocity distribution figure 

 
 
 

halo satisfies. May as well set 1 2r nr=  ( 0 1n< < ), then 

2

1

2 2 3 1
2 1 23

( )3
( ) ( ) 4 (1 )

r

r
e

m rM
m r m r r dr n r

r n
π ρ= + = − + , and 

in view of 20 ( )m r M≤ ≤  we infer  
 

3 31
2 2

( )
0

3 (1 ) e

nM m r
r r

nM n
−≤ ≤

−
                                  (29) 

 
which indicates it is impossible for 2r  to arrive at the 

galaxy’s edge er  in the case of 2 3n < . Obviously, as 

ρ  begins to decrease continuously from 2r  to er  both v  

and g  begin to increase. Of course, it isn’t easy to 

observe the speed between 2r  and er  because near the 

edge er  matter becomes virtually very thin. The curve in 
the right Figure 2 describes the situation predicted 
according to the (27) and (29), and it is in conformity 
with recent observational results from gravitational lens 
and other experiments (Hamuy, 2003; Alcaniz, 2004; 
Cayrel et al., 2001; Genzel et al., 2006), and implies the 
negative pressure is a profound concept. 
So far, we deduce that so-called dark matter is just the 
effect of the negative pressure, and the dark matter 
(Brownstein and Moffat; Baojiu et al. 2008, Stacy, 2008) 
puzzle has naturally been solved (Figure 2). 

Of course, so-called dark energy’s problem is now 
solved since cosmological constant becomes zero again, 
and the concept of dark energy is unnecessary in present 
amendment. 
 
 
Conclusions 
 
Celestial bodies and galaxies are growing up gradually 
with cosmic expansion; Background Radiation is the 
result early celestial body’s mass approached zero, which  



 
 
 
 
implies early cosmos was filled with radiation, and only 
the temperature of early cosmos was higher than that of 
today but its density and pressure are unchanged all 
along; and it is the invisible negative pressure that acts as 
the role of dark matter and dark energy and leads to the 
phenomenon of missing mass and the expansions of 
celestial bodies and galaxies as well as cosmos. We 
expect that deepening research of the negative pressure 
will realize the unification of four interactions.   
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