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INTRODUCTION 
 
Let A  denote the class of functions ( )f z  of the form: 
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which are analytic in the open unit disc { : | | 1}.E z z= <  

Let S  be the subclass of A  which consists of functions 

which are univalent in .E  Also let *( )S γ  and ( )C γ  be 

the subclasses of S  which contain starlike and convex 
functions of order (0 1)γ γ≤ <  respectively. 

In Komatu (1990), the following two parameter family of 
integral operator aQσ  for f A∈ , is defined by: 
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where ,z E∈  0,a >  0,σ ≥  see also Chun and 
Srivastava (2004). 

If ( )f z  is given by (1), then from (2), we can write: 
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Some special cases of aQσ  have been discussed; for 
example, see Flett (1972), Goodman (1983) and Jung et 
al. (1993). From (3) we can easily derive the following: 
 

( )1 1( ) ( ) ( 1) ( ) .a a az Q f z a Q f z a Q f zσ σ σ+ +′ = − −          (4) 

 
In this paper we shall use the operator aQσ  to introduce 

the generalized concept of k -uniformly convexity. 
For [0, ),k ∈ ∞  the domain kΩ  is defined as follows 

(Kanas, 2003): 
 

{ }2 2: ( 1) .k u iv u k u vΩ = + > − +            (5) 

 
For fixed ,k  kΩ  represents the conic region bounded, 

successively, by the imaginary axis ( 0),k =  a parabola 

( 1),k =  the right branch of hyperbola (0 1)k< <  and an 

ellipse ( 1).k >  Also, we note that, for no choices of 

( 1),k k >  kΩ  reduces to a disc. We define the domain 

,k γΩ  as follows (Noor et al., 2009): 



 
 
 
 

, (1 ) , (0 1).k kγ γ γ γΩ = − Ω + ≤ <                        (6) 

 
The following functions, denoted by , ( ),kp zγ  are 

univalent in E  and map E  on ,k γΩ  such that 

, (0) 1kp γ =  and , (0) 0 :kp γ′ >  
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where ( ) , (0,1),
1
z t

u z t z E
t z

−= ∈ ∈
−

 and z  is 

chosen such that 
( )

cosh ,
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R t

k
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 ( )R t  is the 

Legendre’s complete elliptic integral of the first kind and 
( )R t′  is complementarily integral of ( ),R t  (Kanas et al., 

1998, 1999;  Noor at el., 2009). The function , ( )kp zγ  is 

continuous as regard to k  and has real coefficients for 
[0, ).k ∈ ∞  

We now define the following subclasses of analytic 
functions related with the class P  of Caratheodory 
functions (Noor, 2011). 
 
Definition 1.1: Let ,( )kP p Pγ ⊂  denote the class of 

functions ( )p z  which are analytic in E  with (0) 1p =  

and which are subordinate to , ( ),kp zγ  written as 

, ,kp p γ�  where , ( )kp zγ  is given by (7) and  

,( ) ( ).kp E p Eγ⊂  

We note that 0,0( )P p P=  and 0,( ) ( )P p Pγ γ= , where 

( )p P γ∈  implies Re ( ) , .p z z Eγ> ∈  It can easily be 

verified that ,( )kP p γ  is a convex set.  

We extend the class ,( )kP p γ  as follows: 

 
Definition 1.2: Let ( )p z  be analytic in E  with (0) 1.p =   
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Then ,( )m kp P p γ∈  if and only if, for 2,m ≥  0 1,γ≤ <  

[0, ),k ∈ ∞  ,z E∈  we have: 
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From (18), it can easily be seen that the class ,( )m kP p γ  

coincides with the class ,( )kP p γ  for 2.m =  Also 

0,( ) ( ),m mP p Pγ γ=  see Noor (2011). For the class 

0,0( ) ,m mP p P=  we refer to Goodman (1983). 

Related to the class ,( ),m kP p γ  we define the following 

function classes. For these classes we assume that 
2,m ≥  [0, ),k ∈ ∞  0 1γ≤ <  and .z E∈  
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and, for 0,α ≥  
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For 0,k =  these classes reduce to the known classes 

( ),mR γ  ( ),mV γ  and ( )mM α γ  which, respectively, contain 
the functions of bounded radius, bounded boundary and 
bounded Mocanu rotation of order ,γ  see Goodman 
(1983) and  Noor (2011). 

We now define some new subclasses of .A  
 
Definition 1.3: Let .f A∈  Then ( , , )mf k R aγ σ∈ − ∪  if 

and only if ( )a mQ f k Rσ γ∈ − ∪  for [0, ),k ∈ ∞  

0 1,γ≤ <  2,m ≥  0,a >  0σ ≥  and .z E∈  The class 

( , , )mk V aγ σ− ∪  can be defined by the relation given 
as: 
 

( , , )mf k V aγ σ∈ − ∪  if and only if  

 
( , , ).mzf k R aγ σ′∈ − ∪                      (12) 

 
It can easily be seen that ( , , )mf k V aγ σ∈ − ∪  if and  
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only if ( ) .a mQ f k Vσ γ∈ − ∪  
 

Definition 1.4: Let .f A∈  Then ( , , )mf k M aα γ σ∈ − ∪  

if and only if ( )a mQ f k Mσ α γ∈ − ∪  for .z E∈  For 
different permissible choices of parameters, we obtain 
several known as well as new subclasses of A  as 
special cases. 
 
 
PRELIMINARY RESULTS 
 
The following lemma is a generalized version of a result 
proved in Kansa (2003). 
 
Lemma 2.1: Noor (2011). Let 0 k≤ < ∞  and let ,β  δ  

be any complex numbers with 0β ≠  and 
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 If ( )h z  is analytic in ,E  (0) 1h =  

and satisfies: 
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and , ( )kq zγ  is an analytic solution of: 
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then , ( )kq zγ  is univalent, , ,( ) ( ) ( ),k kh z q z p zγ γ� �  and 

, ( )kq zγ  is the best dominant of (13). 

 
Lemma 2.2: Miller (1975). Let 1 2u u i u= +  and 

1 2v v i v= +  and let ( , )u vψ  be complex-valued function 
satisfying the following conditions: 
 
(i) ( , )u vψ  is continuous in a domain 2 ,D ⊂ �  

(ii) (1,0) D∈  and (1,0) 0,ψ >  

(iii) 2 1Re ( , ) 0i u vψ ≤  whenever 2 1( , )i u v D∈  and 
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Lemma 2.3: Let ( )h z  be analytic in E  with (0) 1h =  and 
let: 
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Then 1( ),h P γ∈  where z E∈  and 1γ  is given as: 
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Proof: We shall use Lemma 2.2 to prove this result. Let 
 

1 1( ) (1 ) ( ) .h z H zγ γ= − +                                  (17) 
 
Then ( )h z  is analytic in E  with (0) 1.h =  From (17), we 
have: 
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and from (15) it follows that: 
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We form the functional ( , )u vψ  by taking ( ),u H z=  

( )v zH z′=  as: 
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The first two conditions of Lemma 2.2 are easily satisfied. 
We verify condition (iii) as follows: 
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where   
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observed that 2 1Re ( , ) 0i u vψ ≤  if and only if 0A ≤  and 

0.B ≤  From 0,A ≤  we obtain 1γ  as given by (16) and 

0B ≤  gives us 10 1.γ≤ <  We now apply Lemma 2.2 to 

obtain Re ( ) 0H z >  and this implies 1( )h P γ∈  for 

.z E∈  This completes the proof.     �                                                                                  
 
Lemma 2.4: Kanas (2003). Let 1 k< < ∞  and let ( )p z  

be analytic in ,E  (0) 1p =  and ( )p z  satisfies (2.1). 
Then: 
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For the following two results, we refer to Noor (1992). 
 
Lemma 2.5: An analytic function ( )mf V ρ∈  if and only if 

there exists 1 mf V∈  such that: 
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Lemma 2.7: Goluzin (1946). Let ( )f z  be univalent 

and 0 1.r≤ <  Then there exists a number 1z  with 

1| |z r=  such that for all ,z  | | ,z r=  we have: 
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MAIN RESULTS 
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1
1

1

2
2

2

( ) 1 ( )
( ) ( )

( ) 1 4 2 ( ) 1

1 ( )
( ) .

4 2 ( ) 1

zh z m zh z
h z h z

h z a h z a

m zh z
h z

h z a

� �′′ � �+ = + +� �� �� �+ − + −� �� �

� �′� �− − +� �� �� �+ −� �� �

 

 
Using (21), we have: 
 

,

( )
( ) , 1, 2.

( ) 1
i

i k
i

zh z
h z p i

h z a γ

	 �′
 
+ =� �+ −
 
� �
�                    (22) 

 
We now apply Lemma 2.1 with 1,β =  1,aδ = −  
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where , ( )kq zγ  is the best dominant of (22) and is given 

as: 
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This implies ,( ), 1,2i kh P p iγ∈ =  and .z E∈  

Consequently ,( )m kh P p γ∈  in ,E  and the proof is 

complete.                                                                 
We have the following special cases: �  
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When 1,a =  1 ( )mQ f Rσ γ∈  and from Theorem 3.1 it 

follows that 1
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and 1,a =  1,σ =  0γ =  gives us an interesting result 
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and consequently ,0( )m kh P p∈  for .z E∈      This proves 

the result. �          
 
We have the following special cases: 
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−
� 
� �−

= � �� �
� �� �� �
� �  with 

1,0

1
( 1) .

2
q − =  

 
Therefore, from Theorem 3.3, we have: 
 

 
1

1 (0, , ) 1 ( , , ).
2m mV a R aσ σ− ∪ ⊂ − ∪  

 
Corollary 3.6: Let, for 0,γ =  1,α =  (1, ),k ∈ ∞  

1 (0, , ).mf k M aσ∈ − ∪  That is, 
 

(0, , ) ( , , ),m m kf k V a f k R aσ γ σ∈ − ∪ � ∈ − ∪  

 
where 

,0

1
( 1) , (1, ).

1
( 1) log(1 )

k kq k
k

k

δ = − = ∈ ∞
+ +

  

 
Corollary 3.7: With 0,γ =  1,α =  2,k =  it follows from 
Theorem 3.3 that: 
 

3 3

1
2 (0, , ) 2 ( , , ), 0.813 .

3
3log

2

m mV a R aσ δ σ δ−∪ ⊂ −∪ = ≈ �  

 
Theorem 3.4: For 2 10 ,α α≤ <  

1 2( , , ) ( , , ).m mk M a k M aα αγ σ γ σ− ∪ ⊂ − ∪  
 
Proof: For 2 0,α =  the proof is immediate from Theorem 

3.3. Therefore, we suppose 2 0,α >  and 
1 ( , , ).mf k M aα γ σ∈ − ∪  There exist two analytic 

functions 1( ),H z  2 ( )H z  in ,( )m k rP p  such that: 

 

1 1 1

( ( )) ( ( ( )) )
( ) (1 ) ,

( ) ( ( ))
a a

a a

z Q f z z Q f z
H z

Q f z Q f z

σ σ

σ σα α
	 �′ ′ ′

= − +� �′� �
 

 

2 ,

( ( ))
( ) ( )

( )
a

m k r
a

z Q f z
H z P p

Q f z

σ

σ

′
= ∈  
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By Theorem 3.3. We use the fact that ,( )m k rP p  is a 

convex set, see Noor (2011), and since: 
 

2 2
2 2 1 2

1 1

( ( )) ( ( ( )) )
(1 ) 1 ( ) ( ),

( ) ( ( ))
a a

a a

z Q f z z Q f z
H z H z

Q f z Q f z

σ σ

σ σ
α αα α
α α

� �′ ′ ′
− + = − +� �′ � �

 

 
we obtain the required result that: 
 

2 ( , , )mf k M aα γ σ∈ − ∪  for .z E∈         �  
 

Remark 3.1: Since ( ) ,
1m m

k
k V V

k
γγ +� �− ∪ ⊂ � �+� �

 we can 

easily deduce that 

( )a mQ f k Vσ γ∈ − ∪  implies .
1m

k
f V

k
γ+� �∈ � �+� �

 

 
 
HANKEL DETERMINANT PROBLEM 
 

Let f A∈  and be given by (1.1). Let 
 

2

( ) ,n
a n

n

Q f z z A zσ
∞

=

= +�  .
1n n

a
A a

a n

σ
� �=� �+ −� �

              (25) 

 
For 1,q ≥  1,n ≥  we define Hankel determinant ( )qH n  

for a function ( ),f z  given by (1), as: 
 

1 1

1 2

1 2 2

( ) .

n n n q

n n n q
q

n q n q n q

a a a

a a a
H n

a a a

+ + −

+ + +

+ − + + −

=

�

�

� �

�

                     (26) 

 
The problem of determining the rate of growth of this 
determinant has been considered by several authors 
(Noonan et al., 1972; Noor, 1992; Pemmerenke, 1966, 
1967). For 1z  a nonzero complex number, we define: 
 

1 1 1 1 1 1( , , ( )) ( , , ( )) ( 1, , ( )), 1,j j jn z f z n z f z z n z f z j− −∆ =∆ − ∆ + ≥      (27) 

 
with 1 1( , , ( )) .nn z f z a∆ =  
 
To prove our main theorem here, we shall need the 
following two results, which are due to Noonan et al. 
(1972).   

Lemma 4.1: Let f A∈  and be given by (1) and let the 

thq  order of Hankel determinant of ( )f z  be defined by 

(26). Then, writing 1( , , ( )),j j n z f z∆ = ∆  we have: 

 
 
 
 

2 2 2 3 1

2 3 2 4 2

1 2 0

( ) ( 1) ( 1)

( 1) ( 2) ( )
( ) .

( 1) ( ) ( 2 2)

q q q

q q q
q

q q

n n n q

n n n q
H n

n q n q n q

− − −

− − −

− −

∆ ∆ + ∆ + −
∆ + ∆ + ∆ +

=

∆ + − ∆ + ∆ + −

�

�

� �

�

   (28) 

 

Lemma 4.2: With 1 ,
1

n
z y

n
=

+
 and 0ν ≥  any integer, 

 

1 1
0

( ( 1) )
( , , ( )) ( , , ( )).

( 1)

lj

j jl
l

j y l n
n z zf z n l y f z

l n
υυ υ−

=

� � − −′∆ + = ∆ + +� � +� �
�  

 
We shall also need the following remark given in Noonan 
et al. (1972). 
 
Remark 4.1: Consider any determinant of the form 
 

2 2 2 3 1

2 3 2 4 2

1 2 0

,

q q q

q q q

q q

y y y
y y y

D

y y y

− − −

− − −

− −

=

�

�

� �

�

 

 
with 1 ,i≤  j q≤  and , 2 ( ) ,i j q i jyα − +=  ,det( ).i jD α=  

Then: 
 

1

1

1 2 ( ( ) )
1

(sgn ) ,
q

q

q j j
S j

D y ν
υ

υ − +
∈ =

= � ∏  

 
where qS  is the symmetric group on q  elements, and 

1sgn υ  is either 1+  or 1.−  Thus, in the expansion of ,D  
each summand has q  factors, and the sum of the 

subscripts of the factors of each summand is 2 .q q−  

Now let n  be given and ( )qH n  be given as in Lemma 

4.1, then each summand in the expansion of ( )qH n  is of 

the form: 
 

( ) 1
1

( 2 2 ( )),
q

i
i

n q iυ ν
=

∆ + − −∏  

 

where 1 qSν ∈  and 2

1

( ) , 0 ( ) 2 2.
q

i

i q q i qυ ν
=

= − ≤ ≤ −�  

 
We now prove: 
 
Theorem 4.1: Let ( , , )mf k V aγ σ∈ − ∪  and let the 

Hankel determinant of ( ),f z  for 2,q ≥  1n ≥  be defined 

by (26). Then, for 1
4 ( 1) 2 ,

1
k

m q
γ

	 �+> − −� �−� �

 we have: 



 
 
 
 

2 1
( ) (1) , 1 1 ,

2 1
cq q

q

m
H n O n c

k
γ σ− 	 �−� �� �= = + − −� �� �� �+� �� �� �

 

 
and  (1)O  depends only on ,m  ,γ  k  and .σ  
 
Proof: Since ( , , ),mf k V aγ σ∈ − ∪  it follows from 
Remark 3.1 that: 
 

( )
1a m m

k
Q f k V V

k
σ γγ +� �∈ − ∪ ⊂ � �+� �

 for .z E∈  

 
Let ( ).aQ f F zσ =  then, using Lemma 2.5 and a result 
due to Brannan (1968, 1969), we can write: 
 

1
1

1 1

1
1 1 1

4 2 4 2 *1 2
1 2

( ) ( ( )) , ,

( ) ( )
, , .

k
k

m

m m k

F z F z F V

s z s z
s s S

z z

γ

γ

+−
+

−� �
� �+� �+ −

′′ = ∈

� 

� � � �� �= ∈� � � �� �� � � �
� �

         (29) 

     
We can write: 
 

( ( )) ( ) ( ), ,
1m

k
zF z F z h z h P

k
γ +� �′ ′ ′= ∈ � �+� �

 and 

( ) ( ( ( )) ) ( )[ ( ) ( )].T z z zF z F z h z zh z′ ′ ′ ′ ′= = +  
 

Now, for ,iz re θ=  1,j ≥  1z  any nonzero complex 
number, we consider: 
 

2 ( )
1 10

1 1
4 2 12 1 2

11 1 10
4 2 1

2

1
( , , ( )) ( ) ( ) ,

2

( )1
( ) ( ) ,

2 ( )

j i n j
j n j

m
kj

n j m
k

n z T z z z T z e d
r

s z
z z h z zh z d

r s z

π θ

γ
π

γ

θ
π

θ
π

− +
+

−� �� �+� �� �+� �� �

+ + −� �� �−� �� �+� �� �

∆ = −

′≤ − +

�

�

(30) 

 
where we have used (29).  

Using Lemma 2.6, Lemma 2.7 and well-known 
distortion result for starlike functions in (4.6), we obtain 
for:  
 

1 1
, 1

4 2 1
m

j j
k
γ−� �� �+ > ≥� �� �+� �� �

 

 
1 1 1

1 224 2 1 2 1

1 1 2

1 4 2 ( , , )
( , , ( )) ,

1 1 1

m mj j
k k

j n j

r r Bm k
nz Tz

r r r r

γ γ
γ

γ

− −� �� � � �� �− + −� �� � � �� �+ +� �� � � �� �

+ +

� 
� 

� ��� � �� �� �∆ ≤ � ��� � �� �� �− − −�� � �� �

� �� �

 

 
Where ( , , )B m kγ  is a constant depending  on ,m  ,γ  k   
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and j  only. Now applying Lemma 4.2 and putting 

1 ,
1

nin
z e

n
θ=

+
 ( ),n → ∞  we have for: 

 

 
1

1 2
2 12(1 )

2 , 1, ( , , ( )) (1) ,
1

n

m
j

i k
j a

k
m j j n e Q f z O n

γ
θ σ

γ

−� �� �+ − −� �� �+� �� �� �+> − ≥ ∆ =� �+� �

 

 
and on using relation (4.1), we obtain: 
 

1
1 2

2 1( , , ( )) (1) ,n

m
j

i k
j n e f z O n

γ σ
θ

−� �� �+ − − −� �� �+� �� �∆ =                  (31) 

 
where (1)O  depends on ,m  ,γ  ,k  ,j  a  and σ  only. 

For 1,q =  1 0( ) ( )nH n a n= = ∆  and from (30) we 
have: 
 

1
1 2

2 1
0 ( , , ( )) (1) .n

m
j

i k
na n e f z O n

γ
θ

−� �� �+ − −� �� �+� �� �= ∆ =  
 
For 0,σ =  this result reduces to one proved in Noor 

(2011). For 2,q ≥  we use Lemma 4.1, Lemma 4.2, (31) 
and Remark 4.1 with similar argument due to Noonan et 
al. (1972) to have: 
 

21
1 2

2 1 4(1 )
( ) (1) , ( 1) 2 ,

1

m
q q

k
q

k
H n O n m q

γ σ

γ

� 
−� �� �+ − − −� �� �� �+� �� �� � � �+= > − −� �+� �
 

 
where (1)O  depends only on ,m  ,q  ,γ  ,k  a  and .σ  
This completes the proof.  �  

For 0,kσ γ= = =  we obtain the rate of growth of 
Hankel determinant of functions of bounded boundary 
rotation. By choosing different permissible values of the 
parameters involved, we obtain several new and some 
known results as special cases of this result. 
 
 
CONCLUSION 
 
In this paper, we have used the principle of subordination 
and a family of integral operators to introduce some new 
subclasses of analytic functions in the unit disc. We have 
obtained several results such as inclusions results and 
radius problems for these classes of analytic functions. 
The rate of growth of Hankel determinant for the 
functions in these new classes is also studied. We have 
also discussed some special cases of our results. These 
results may stimulate further research in this field. 
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