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Simulation optimization studies the problem of optimizing simulation-based objectives. Simulation 
optimization is a new and hot topic in the field of system simulation and operational research. To 
improve the search efficiency, this paper presents a hybrid approach which combined genetic algorithm 
and local optimization technique for simulation optimization problems. Through the combination of 
genetic algorithms and with the local optimization method, it can maximally use the good global 
property of random searching and the convergence rate of a local method. This study considers the 
sampling procedure based on orthogonal design and quantization technology, the use of orthogonal 
genetic algorithm with quantization for the global exploration, and the application of local optimization 
technique for local exploitation. The final experimental results demonstrated that the proposed approach 
can find optimal or close-to-optimal solutions, and is superior to other recent algorithms in simulation 
optimization. 
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INTRODUCTION 
 
Determining the best combination of variables to use as 
input for a simulation model is a common practical 
problem. Typically, the input values have to be chosen in a 
way that the cost function is optimized; the latter being 
computed from the model’s outputs. This problem is 
present in several application domains where it is not 
possible to build a mathematical model of the system to 
be studied (Pierreval and Paris, 2000). In the area of 
manufacturing systems for example, simulation 
optimization is applied in many scenarios including: To 
optimize productive machine hours; to minimize the cost 
of an automated storage (retrieval) systems; to maximize 
the output of a computer-integrated manufacturing (CIM) 
systems, and to minimize station idle times in assembly 
line. 

Several simulation optimization methods exist and have 
been used to solve such problems. Unfortunately, most of 
these methods suffer from several shortcomings, in 
particular: Their sensitivity to local extrema, their 
limitations in addressing problems with mixed  numerical 
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and non-numerical variables or high computational load. 
Evolutionary algorithms (EAs), which seem to be less 
investigated as a possible technique for the optimization 
of simulation models offer powerful capabilities that can 
avoid these shortcomings. These algorithms have been 
recognized as efficient tools for solving several kinds of 
optimization problems, including the optimization of real 
mathematical functions (Hindi et al., 2002) and 
combinatorial problems (Tsai et al., 2004). This paper 
examines the application of EAs to solve simulation 
optimization problems. 

Although EAs are known to be a powerful optimization 
technology, they are, unfortunately, notoriously slow. In 
this paper, a hybrid approach combined genetic algorithm 
and local optimization technique is proposed to the 
simulation optimization problems. This study considers 
the sampling procedure based on orthogonal design and 
quantization technology, the use of orthogonal genetic 
algorithm with quantization for the global exploration, the 
application of local optimization technique for local 
exploitation. Through the combination of genetic 
algorithms and with the local optimization method, it can 
maximally use the good global property of random 
searching and the convergence rate of a local method. 
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LITERATURE REVIEW 
 

Simulation optimization is an optimization where the 
objective function and constraints are only available 
through computer simulation. Simulation optimization is 
broadly applied in the fields of system design and 
automation. Simulation optimization is currently a hot area 
that has attracted the attention of many researchers (Ding 
et al., 2005). 

Simulation optimization assumes that the objective 
function can only be estimated through simulation. 
Simulation model and optimization algorithm are two 
important pieces to solve a simulation optimization 
problem. The aim of the optimization algorithm is to 
propose solutions to the simulation model for evaluation, 
which will return each solution’s performance. The 
simulation model is stochastic and provides outputs that 
are translated to performance measures via expected 
values. Therefore, several simulation runs will be needed 
to evaluate the new solutions generated through the 
optimization algorithm at each generation. In general, 
simulation optimization problems can be mathematically 
formulated as follows: 
 

( ) ( ),
X D

Min F X f X wE
∈

=                 (1) 

 

where f is a function of w  parameterized by X , and 

represents the simulation objective output. The random 
vector w embodies all perturbations caused by 

uncontrollable factors. Vector X symbolizes the decision 
variables associated with controllable factors, and it is in 
general composed of discrete and continuous variables 

with values in the solution space D . ( )F X  is a function 

representing the conditional expected value of the 

simulation objective output for a given X . 
 

It has been proven that a general simulation optimization 
problem cannot be solved in a finite number of steps. The 
simulation optimization problem extensively exists in 
science and engineering fields. Finding the global optimal 
solution of such problems is unsolved by using 
mathematical method. Although local optimization 
techniques have been very sophisticated and well 
documented, they can only guarantee to produce a local 
optimal solution, unless a starting point is sufficiently close 
to a global optimal solution (Yang et al., 2005). Once an 
objective function has many local extreme points, the 
existing optimization methods may not obtain the global 
optimization efficiently. 

In recent year, a number of deterministic and stochastic 
algorithms have been proposed for solving the simulation 
optimization problems. The stochastic algorithms may be 
said to start with the publications of Metropolis, Holland 
and Torn, which are pioneering to the full development 
and applications of the stochastic algorithms, in particular, 

 
 
 
 
simulated annealing (SA), genetic algorithms (GA) and 
multi-start approach, in the last three decades (Cohn and 
Fielding, 1999; Tu and Mayne, 2002a, b). In general, the 
computational results of the stochastic methods are better 
than those of the deterministic method. 

The GA provides a robust procedure not only to explore 
broad and promising regions of solutions but to avoid 
being trapped at the local optimization (Leung and Wang, 
2001). But, GA cannot theoretically guarantee to always 
produce a global optimal solution, unless the number of 
samplings tends to (practically impossible) infinity. A 
number of hybrid global optimization algorithms have 
been proposed by combining GA with a local optimization 
method (Kaveh and Rahami, 2006) in order to maximally 
use the good global property of random searching and the 
convergence rate of a local method. Gerstoft suggested 
incorporating the Gauss-Newton method into GA in order 
to improve every member of the new generation. At the 
same time, many innovative models and novel 
approaches based on GA were proposed to solve global 
optimization problem recently (Amirjanov, 2004; Chelouah 
and Siarry, 2000; Li et al., 2002; Tu and Lu, 2004; Xing et 
al., 2006). 

Among these improved approaches, Leung and Wang 
designed the orthogonal genetic algorithm with 
quantization (OGA/Q) for global numerical optimization 
with continuous variables (Leung and Wang, 2001). The 
final experimental results suggest that OGA/Q achieved 
the significantly better results than many published 
improved GA. Also, Xing et al. proposed an improved 
orthogonal genetic algorithm with quantization (IOGA/Q) 
(Xing et al., 2009). They constructed a novel mutation 
operator based on the immunity operation. Experiments 
with IOGA/Q on many test functions resulted in 
near-optimal solutions in all cases. In comparison with 
several other algorithms, IOGA/Q achieved improved 
accuracy. According to our experimental results, the local 
optimization capability of OGA/Q and IOGA/Q is inefficient 
when solving the simulation optimization problems. 

In this paper, a hybrid approach combined genetic 
algorithm and local optimization technique will be 
presented for solving simulation optimization problems. In 
this proposed hybrid approach, we applied orthogonal 
design and quantization technology to sample from the 
feasible domain firstly, and executed the global 
exploration using orthogonal genetic algorithm with 
quantization secondly, then implemented local 
exploitation through local optimization technique. The 
optimization performance of this proposed approach has 
been improved largely by efficaciously integrating the 
orthogonal design, quantization technology, genetic 
algorithm and local optimization method together. 

 
 
THE PROPOSED IMPROVED GENETIC ALGORITHM 

 
Here, we present our proposed improved genetic algorithm for 
solving the  simulation  optimization  problems detailedly.  The
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Figure 1. Optimization framework of this proposed IGA. 

 
 
 

 
 
Figure 2. The mechanism of floating point representation. 

 
 
 
difference between our approach and OGA/Q can be summarized 
as follows. At first, an improved mutation operator was constructed 
in this approach. Secondly, the local optimization method was 
integrated to this proposed approach. 

This proposed hybrid approach, called improved genetic 
algorithm (IGA), can be briefly sketched as follows. At first, it gained 
the initial population through sampling from the feasible domain by 
using orthogonal design and quantization technology; secondly, it 
evolved the current population through orthogonal genetic algorithm 
with quantization; thirdly, it applied the local optimization technique 
to refine the current best solution. The computational flow of this 
proposed HGA is displayed in the Figure 1. 
 
 
Generation of initial population 

 
Coding and decoding is a time-consuming procedure. Also, if the 
length of solution (chromosome) is too long, then it should have 
enough memory for the giving computation. To decrease computing 

time furthest and control the length of solution effectively, we use the 
floating point representation in this proposed IGA. The 
chromosomes are the arrays of real number instead of bit strings 
(the coding and decoding procedures, necessary for the 
binary-coded GA, are then avoided). The length of chromosome is 
the amount of independent variable of optimization problem. Figure 
2 illustrates the mechanism of floating point representation. 

Before an optimization problem is solved, we may have no 
information about the location of the global minimum. It is desirable 
that the chromosomes of the initial population be scattered uniformly 
over the feasible solution space, so that the algorithm can explore 
the whole solution space evenly. Therefore, it gained the initial 
population through sampling from the feasible domain by using 
orthogonal design and quantization technology. 
 
 
Crossover operation 
 
A crossover operator recombines the gene-codes of  two  parents
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Figure 3. An example of our new proposed mutation operation. 

 
 
 
and produces offspring such that the children inherit a set of building 
blocks from each parent. On the one hand, we want to obtain 
enough potential offspring for improving the current population; on 
the other hand, each pair of parents should not produce too many 
potential offspring in order to avoid a large number of function 
evaluations during selection. As you know, it is very pivotal to select 
a small, but representative sample of points as the potential 
offspring. For this purpose, we use the new proposed operator, 
orthogonal crossover with quantization (Leung and Wang, 2001), as 
the crossover operator of IGA. 
 
 
Mutation operation 

 
Mutation takes place on some newly formed children in order to 
prevent all solutions from converging to their particular local optima. 
According to traditional ways, to perform mutation on a chromosome, 

it randomly generates an integer [ ]1,j N∈ and a real 

number ,
j j

z l u ∈   , and then replaces the
th

j component of 

the chosen chromosome by z to get a new chromosome. But, this 
traditional mutation is inefficient for solving the complex global 
optimization problem. In this paper, we present a new mutation 
mechanism for our proposed IGA. We apply the round operation to 
implement our new mutation. Figure 3 is an example of our 
proposed mutation operation. 

In the proposed IGA algorithm, the floating point representation is 
applied to represent the individual. That is, the value of each 
variable will be denoted by a float number. Since the configuration of 
computer is more powerful than before, the value of float number is 
more detail than before, e.g., 37.21453698643 or -0.12345678901. 
Suppose that the optimal value of one variable is 37.2, it is very 
difficult to obtain this value in such detail environment. For this 
reason, it is necessary to introduce the round operation into the 
mutation operation. In this proposed IAG algorithm, an improved 
mutation is proposed based on the mutation. As the aforementioned 
analysis, this novel mutation operator is helpful to obtain some 
optimal solution. 

Local optimization 
 
In GA, the generated solutions by genetic operators may be so 
coarse that they should be improved by some complementary local 
optimization method. In this paper, we apply an effective steepest 
descent method to refine the near-optimal solutions achieved by GA. 
We only refine the global excellent solution (the most excellent 
solution from the beginning of the trial) at each generation. 
 
 
EXPERIMENTAL RESULTS 
 
Here, the proposed approach is demonstrated by a 
simulation optimization problem. The experiments were 
performed on a Pentium IV 2.4 GHz personal computer 
with a single processor and 512M RAM. To avoid the 
randomness in the optimization process, each experiment 
was run 50 times. The parameter settings for the OGA/Q 
used in this paper are listed in Table 1. 

In order to simplify subsequent computations, we only 
consider single objective simulation optimization problems 
in this part. In fact, the appropriate approach can reduce 
multi-objective simulation optimization problems to single 
objective simulation optimization problems. Given the 
case of intercommunion at future, a complex function is 
used to replace the input-output relationships of the 
known simulation system (sub-system). 

The input-output relationship of the giving simulation 
optimization problem is shown in Figure 4. There are five 
decision variables in the sub-system 1, which needs five 
seconds to run its practical simulation model. The time for 
running the simulation model of sub-system 2 is ten 
seconds and there has ten decision variables in the 
sub-system 2. We should spend twenty seconds to run 
the practical simulation model of sub-system 3, which has
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Table 1. Parameter settings of the proposed IGA. 
 

Parameter Signification Setting 

1
Q  Number of quantization levels 5 

B  Number of subspaces 1 

G  Population size 20 

2
Q  Number of quantization levels 3 

F  Number of factors 4 

c
P  Crossover probability 0.60 

m
P  Mutation probability 0.10 

MaxGen  Maximum iterative 100 
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Figure 4. Input-output relationships of the simulation optimization problem. 

 
 
 
twenty decision variables. In sub-system 4, it has three 
decision variables and it needs three seconds to run its 
practical simulation model. The complex function 
relationship of the giving simulation sub-systems are 
listed in Table 2. The feasible space (searching space or 
definition space) of each complex numerical function was 

described in Table 2 as well. Here, ( )Fix x rounds the 

elements of x to the nearest integers towards zero. 

To demonstrate the efficiency of this approach, 
improved genetic-annealing algorithm (Lan et al., 2002), 
genetic algorithm-simplexes (Han and Liao, 2001), new 
immune GAs (Zhang and Yang, 2005), OGA/Q (Leung 
and Wang, 2001) and this hybrid approach were applied 
to solve the simulation optimization problem described in 
part A. These two points should be noted: (1) The five 
algorithms were implemented using the MATLAB 
language, and run in the MATLAB environment; (2) The 
same parameters were applied to all algorithms to avoid 
unintended   optimization.   The  experiment  results 

produced using the five different approaches for solving 
the simulation optimization problem are listed as Table 3. 

These results show that the hybrid approach is clearly 
superior to the other four approaches. The results show 
drastic reductions in computing time using the hybrid 
approach and that it outperforms the other, recently 
developed, algorithms for simulation optimization. The 
proposed hybrid approach is a valuable addition to the 
tools available for solving simulation optimization 
problems, being not only feasible, correct and valid, but 
also fast and efficient. 
 
 
Conclusions 
 
This paper presented a hybrid approach which combined 
genetic algorithm and local optimization technique for 
simulation optimization problems. The experimental 
results obtained from the computational example have 
shown that this proposed approach is  correct,  feasible
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Table 2. Complex function relationship of the known simulation sub-systems. 
 

 Input-output relationship Feasible space Simulation time (S) 

Sub-system 1 ( )
5

1 1

1

i

i

S Fix x
=

=∑  1
0 20

i
x≤ ≤  5 

 

Sub-system 2 ( )( )
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2 2 2

1

cos 2i i

i

S x A xπ
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= − × ×∑  
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2
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Sub-system 4 

3

4

1
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i

S S S
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 
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 
∑  0 100
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Table 3. Experiment results produced using the different approaches. 
 

Name of different approaches Optimization result Simulation time (h) 

Improved genetic-annealing algorithm 127.76 794.41 

Genetic algorithm-simplexes 179.64 151.55 

New immune GAs 185.81 170.89 

OGA/Q 186.62 255.12 

This proposed hybrid approach 190.61 28.66 
 
 
 

and efficacious. 
The future researches are summarized as follows: 

Improve the performance of this proposed approach, and 
applying it to solve other engineering problems. 
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