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In this paper, alternative variational iteration method (AVIM) is presented to solve linear and nonlinear 
delay differential equations (DDEs). A general lagrange multiplier is used to construct a correction 
functional. The proposed series solutions are found to converge to exact solution rapidly. The 
computation of three test examples of DDEs was presented to confirm the efficacy and validity of AVIM. 
The results obtained show that the AVIM is very simple and efficient. 
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INTRODUCTION 
 
In several physical phenomena, science, engineering and 
applied mathematics, differential equations appear both 
linear and nonlinear latency. The introduction of delay in 
the model enriches its dynamics of these models and 
allows for a precise description of the phenomena of real 
life. Delay differential equations (DDEs) are proved to be 
useful in Fridman et al. (2000), control systems. In many 
physical phenomena, lasers, traffic models Davis (2002), 
metal cutting, epidemiology, neuroscience, population 
dynamics Kuange (1993), chemical kinetics Epstein and 
Luo (1991). In disparate ordinary differential equation 
(ODE), where the initial conditions are defined at 
preliminary point, DDEs given device history as the initial 
conditions over the delay interval. Different kinds of 
vigorous techniques have been developed in recent 
years   to  find  an  approximate  solution  for  these  such 

delay differential equations, as the Sumudu variational 
iteration method (SVIM) Vilu et al. (2019), the Laplace 
variational iteration method (LVIM) Biala et al. (2014), the 
Optimal homotopy asymptotic method (OHAM) Anakira et 
al. (2013), the Differential transform method (DTM) 
Karakoc and Bereketoglu (2009), Rashidi et al. (2011), 
the Homotopy perturbation method (HPM) Shakeri and 
Dehghan (2008), the Adomian decomposition method 
(ADM) Evans and Raslan (2007)  and the Homotopy 
analysis method (HAM) Alomari et al. (2009), Hassan 
and Rashidi (2011). The method of variational iteration 
method (VIM) was developed for solving nonlinear 
problems by He (1999, 2000, 2004, 2007) He and Wang 
(2007) and He and Wu (2007). Subsequent Batiha et al. 
(2007), Mahdy et al. (2015), Noor and Mohyu-Din (2008), 
Wazwaz   (2009)   and   Wu    (2013)    reflect    the   VIM
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procedure's versatilliy, reliability and performance. The 
aim of this paper is to use alternative method of 
variational iteration (AVIM) (Sakar and Ergoren, 2015; 
Singh and Kumar, 2017) to solve linear and nonlinear 
differential equations of delay  (Biala et al., 2014; Vilu et 
al., 2019; Alomari et al., 2009). We show that by standard 
of variational iteration the approximate solution thus 
obtained converges more easily relative to the 
approximate solutions. Several illustrative examples have 
been presented. 
 
 

ALTERNATIVE VARIATIONAL ITERATION METHOD 
(AVIM) 
 

To illustrate basic idea of this method, we consider a 
general differential equation (Sakar and Ergoren, 2015; 
Singh and Kumar, 2017) 
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where kc are real numbers, R is a linear operator, N is 

a nonlinear operator, ( )m mL d x t d t  is the term of 

maximum order derivative, and ( )g t  is a known analytic 

function. 
The correctional function (1) can be constructed using 

AVIM as defined in Odibat (2010) as: 
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Where the Lagrange multiplier ( )   can be optimally 

defined by way of variation theory. Generally, the 
following Lagrange multipliers are used: 
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Equations 3 and 2 yield the following iteration formula 
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Now, we apply the variational iteration solution 
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 , in the present framework is obtained 

by the following iteration formula for .m N  
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Then we have 
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APPLICATIONS 
 
In this part, three examples are provided that illustrate the  
method of Biala et al. (2014), Vilu et al. (2019), Alomari et 
al. (2009). 
 
 
Example 1. Consider a first order nonlinear delay 
differential equation as given: 
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Keeping Equation 4 in mind, the iteration formula of 

Equation 5 at 1m  can be constructed as 
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Applying the iteration formula of Equation 6, we attain 
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The solution of Equation 5 is  
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Which  is closed form to the exact solution and the results
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Figure 1. The solution behavior of AVIM, SVIM and exact solutions 

( )x t  of  Example 1 for  0,1t   . 

 
 
 

Table 1. Approximate AVIM solution of Example 1.  
 

t  Exact AVIM approx. a b sE  

0 0  0  0  

0.2 0.1986693308  0.1986693309  0  

0.4 0.3894183423  0.3894183422  1 10E   

0.6 0.5646424734  0.5646424721  1.3 09E   

0.8 0.7173560909  0.7173560740  1.69 08E   

1.0 0.8414709848  0.8414708609  1.239 07E   

 
 
 
due to Biala et al. (2014) and Vilu et al. (2019) and 

Alomari et al. (2009). The solution behavior of ( )x t  for 

different time  0,1t   depicted in Figure 1. In particular, 

the Solution 7 reduces to 
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Which is same as obtained by SVIM Vilu et al. (2019), 
LVIM Biala et al. (2014), HPM Alomari et al. (2009) and is 

closed form of the exact solution  ( ) sin .x t t  The 

approximate AVIM solution and the absolute values of 
AVIM are reported in Table 1 while the error behavior 
between SVIM Vilu et al. (2019) and AVIM in Example 1 
is shown in Figure 2. 

This confirms that the proposed results agreed well 
with solutions obtained by SVIM Vilu et al. (2019), LVIM 
Biala et al. (2014), Alomari et al. (2009) and approach 
exact solution. 

 
Example 2.   Consider   a   second   order   linear   delay 



 
 
 
 
 

 
 

Figure 2. Plots of the absolute errors for some values of t
with SVIM (Vilu et al., 2019) and AVIM in Example 1. 

 
 
 

 
 

Figure 3. The solution behavior of AVIM, SVIM and exact 

solutions ( )x t  of  Example 2 for  0,1t   . 

 
 
 

differential equation as given: 
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Keeping (4) in mind, the iteration formula of Equation 8 at 

2m  can be constructed as: 
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Applying the iteration formula of equation (9) above, we 
attain 
 

 
 
The solution of Equation 8 is  
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Which is closed form to the exact solution and the results 
due to Biala et al. (2014) and Vilu et al. (2019) and 

Alomari et al. (2009). The solution behavior of ( )x t  for 

different time  0,1t   depicted in Figure 3. In particular, 

the solution 10 reduces to 
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LVIM Biala et al. (2014), HPM Alomari et al. (2009) and is 

closed form of the exact solution 
2( ) .x t t  The 

approximate AVIM solution and the absolute values of 
AVIM are reported in Table 2 while the error behavior 
between SVIM Vilu et al. (2019) and AVIM in Example 1 
is  shown  in  Figure  4.  This  confirms  that the proposed
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Table 2. Approximate AVIM solution of Example 2.  
 

t  Exact AVIM  Approx. a b sE  

0 0  0  0  

0.2 0.04  0.04  0  

0.4 0.16  0.16  0  

0.6 0.36  0.3599999984  1.6 09E   

0.8 0.64  0.6399999722  2.78 08E   

1.0 1 0.9999997415  2.585 07E   

 
 
 

 
 

Figure 4. Plots of the absolute errors for some values of t with 

SVIM [Vilu et al. (2019)] and AVIM in Example 2. 

 
 
 
results agreed well with solutions obtained by SVIM Vilu 
et al. (2019), LVIM Biala et al. (2014), Alomari et al. 
(2009) and approach exact solution. 
 
 
Example 3. Consider the third order nonlinear delay 
differential equation as given: 
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Keeping (4) in mind, the iteration formula of equation (11) 

at 2m  can be constructed as: 
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Applying the iteration formula of equation (12) above, we 
attain: 
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The solution of Equation 11 is 
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Which is closed form to the exact solution and the results 
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Figure 5 The solution behavior of AVIM, SVIM and exact 

solutions ( )x t  of  Example 3 for  0,1t  . 

 
 
 

Table 3. Approximate AVIM solution of Example 3.  
 

t  Exact AVIM Approx. a b sE  

0 0  0  0  

0.2 0.1986693308  0.1986693309  1 10E   

0.4 0.3894183423  0.3894183422  1 10E   

0.6 0.5646424734  0.5646424734  0  

0.8 0.7173560909  0.7173560909  0  

1.0 0.8414709848  0.8414709848  0  

 
 
 

due to Biala et al. (2014) and Vilu et al. (2019) and 

Alomari et al. (2009). The solution behavior of ( )x t  for 

different time  0,1t   is depicted in Figure 5. In 

particular, Solution 13 reduces to 
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Which is same as obtained by SVIM Vilu et al. (2019), 
LVIM Biala et al. (2014), HPM Alomari et al. (2009) and is 

closed form of the exact solution  ( ) sin .x t t  The 

approximate AVIM solution and the absolute values of 
AVIM are reported in Table 3 while the error behavior 
between SVIM Vilu et al. (2019) and AVIM in Example 1 
is shown in Figure 6. This confirms that the proposed 
results agreed well with solutions obtained by SVIM Vilu 
et al. (2019), LVIM Biala et al. (2014) and Alomari et al. 
(2009) and approach exact solution. 
 
 
Conclusion 
 

In  this  paper,  AVIM  has  been  applied  for  finding   the 
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Figure 6. Plots of the absolute errors for some values of t with SVIM [Vilu et al. (2019)] and AVIM in 

Example 3. 
 
 
 

approximate solutions of the linear and nonlinear DDE. 
The method gives more realistic series solutions that 
converge quickly in physical problems. The numerical 
results have been given in terms of the power series 
which converges to the exact solutions. The computation 
of three test examples of DDEs was presented to confirm 
the efficacy and validity of AVIM. The proposed 
agreement was excellent with Biala et al. (2014) and Vilu 
et al. (2019). These approximate solutions are obtained 
without any perturbation, discretization or restrictive 
conditions. 
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