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Elastic-plastic transitional stresses in an isotropic disc having variable thickness under internal 
pressure have been derived by using Seth’s transition theory. The effect of stresses in fully-plastic 
state for different values of k presented graphically and discussed. Disc made of compressible 
material and having variable thickness yields at some radius R1 at a higher pressure as compare to 
disc made of incompressible material which yields at the outer surface. Flat disc made of 
incompressible material yields at internal surface at higher pressure as compare to disc made of 
compressible material. Circumferential stress is maximum at the outer surface of the disc having 
variable thickness.  
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INTRODUCTION 
 
Circular disks under the action of external pressures have 
been investigated by several workers (Güven, 1993; Ga-
mer, 1983, 1984)). It is well known that disc with variable 
thickness are frequently found in mechanical engineering. 
A literature survey indicates that several workers have 
analyzed circular discs with constant material properties 
under various conditions (Gamer, 1983). (Durban, 1987) 
found an exact solution for the internally pressurized 
elastic-plastic, strain-hardening, annular plate. Chaudhuri 
(1979) obtained stresses in a non-homogeneous rotating 
annulus by varying Poisson’s ratio of the material. In ana-
lyzing the problem, these authors used some simplifying 
assumptions. First, the deformation is small enough to 
make infinitesimal strain theory applicable. Second, sim-
plifications were made regarding the constitutive equa-
tions of the material like incompressibility of the material 
and a yield criterion. Incompressibility of the material is 
one of the most important assumptions which simplifies 
the problem.  

In fact, in most of the cases, it is not possible to find a 
solution in closed from without this assumption. Seth’s 
transition does not require these assumptions and thus 
poses and solves a more general problem from which 
cases pertaining to the above assumptions can be work-
ed out. Seth’s transition theory utilizes the concept of 
generalized strain measure and asymptotic solution at 

turning points of the differential equations defining the 
deformed field and has been successfully applied to num-
ber of the problems (Seth, 1966; 1972; Seth, 1963; Hul-
surkar, 1966; Gupta and Dharmani, 1979, 1980; Dhar-
mani et al., 1979; Gupta and Kumari, 2005; Pankaj, 2008; 
Pankaj and Sonia, 2008; Pankaj and Gupta, 2007). Seth 
(1966) has defined the generalized principal strain 
measure as: 
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where n is the measure and ii

A

e  is the principal Almansi 
finite strain components. In Cartesian framework we can 
readily write down the generalized measure in terms of 
any other measures. For uniaxial case, it is given by Seth 
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 where 0l  and l is the initial and  

 

strained length respectively. For n = 0, 1, 2, -1, -2, it gives 
the Hencky,  Swainger,   Almansi,   Cauchy   and   green 
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Figure 1. Isotropic disc having variable thickness 
subjected to internal pressure. 

 
 
 

measures respectively. (Seth, 1966), has shown that the 
well known creep strain laws used in current literature 
such as Norton’s law, Kachonov law, Odqvist law, Andra-
de’s law etc. can be derived from the generalized mea-
sure. The generalized strain measure not only gives the 
well known strain measures as special cases, but it can 
also be used to find the creep stresses when it is com-
bined with the transition point analysis of the governing 
differential equations. Seth has shown that the transition 
point analysis does not require the assumption of incom-
pressibility. Seth showing that the asymptotic solution of 
the governing differential equations at the transition point 
gives the results which are obtained by assuming yield 
criteria when they exist. The most important contribution 
to be made by generalized measure is that it makes the 
use of semi-empirical laws and jump conditions unneces-
sary. If such law exists, they come out from the analytic 
treatment as a particular case. Thus, an important func-
tion of non-linear measure is to explain transition without 
assuming conditions to match the 2 solutions at transi-
tion. In this research paper we analyse elastic-plastic 
transition in an isotropic disc having variable thickness 
subjected to internal pressure. The thickness of the disc 
is assumed to vary along the radius in the form 
 

( ) kbrhh −= 0 ,               (2)                      
 

where 0h  is the constant thickness at r = b and k is the 
thickness parameter. Results obtained have been discus-
sed numerically and depicted graphically. 
             
 
Governing equations 
 
Consider an isotropic thin disc of variable thickness with 
internal radius and external radius b subjected to internal 
pressure p as shown in Figure 1. The disc is taken to be 
sufficiently small so that the disc is effectively in a state of 
plane stress, that is, the axial stress zzT  is zero.  

The displacement components in cylindrical polar co- 
ordinate are given by Seth (1966):  
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( )β−= 1ru , 0=v , dzw = ,         (3)                   
 

where β  is position function, depending on 

22 yxr +=  only and d is a constant. 
The finite strain components are given by Seth (1966) as  
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where drdββ =′  and meaning of superscripts “A” is 
Almansi.  
By substituting equation (4) into equation (1), the 
generalized components of strain are  
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                     (5)             
The stress –strain relations for isotropic media is given by 
Sokolinikoff (1956). 
 

ijijij eIT µλδ 21 += , (i, j = 1, 2, 3)                      

                     (6) 
Where ijT  and ije  are the stress and strain compo-

nents, λ  and µ  are lame’s constants and kkeI =1  is the 

first strain invariant, ijδ  is the Kronecker’s delta. 

Equations (6) for this problem becomes 
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0==== zzzrzr TTTT θθ .         (7)                 
                      
By substituting equations (5) into equations (7), one gets  
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where c is compressibility factor of the material in term of 
Lame’s constant, there are given by  
 

( )2 / 2c µ λ µ= + . 
 
Equations of equilibrium are all satisfied except 
 

( ) 0=− θθhThrT
dr
d

rr .            (9)                 

 
By substituting equations (8) into equation (9), one gets a 
non-linear differential equation with respect to β  
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                     (10) 
where /h dh dr′ = and Pr ββ =′  (P is function of β  
and β  is function of r). 

Transition points of β  in equation (10) are 1−=P  and 

±∞=P .The boundary conditions are 
 

rrT  = -p at r = a and rrT  = 0 at r = b.        (11)             
                      
 
Solution through the principal stress 
   
For finding the plastic stress, the transition function is ta-
ken through the principal stress (Seth, 1972, 1963; 
Hulsurkar, 1966; Gupta and Dharmani, 1979, 1980; 
Dharmani et al., 1979, Gupta and Kumari, 2005; Pankaj, 
2008) at the transition point ±∞→P . We take the tran-
sition function R as: 
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and by taking the logarithmic differentiation of equation 
(12) with respect to r, one gets: 
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By substituting the value of /dP d β  from equation (10) 
into equation (13), one gets 
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Asymptotic value of equation (14) as P → ±∞  is, and 
using equation (2), one gets after integration, 
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where A  is a constant of integration.       
Substituting equation (15) in equation (9), one gets after 
integration  
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where B is a constant of integration. 
Substituting equation (11) in equation (16), we obtained 
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Substituting the value of A and B in equations (15) and 
(16), one gets the transitional stresses as: 
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Table 1. Pressure required for initial yielding (Pi) and fully plastic state (Pf) for an Isotropic disc having variable thickness for different values of k and 
c. 
 

Isotropic Disc having 
variable thickness 
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Pressure 
required for 
fully-plastic 
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Percentage increase 
in pressure from 
initial yielding to 
fully plastic state 
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6.965386786 % 
5.342693651 % 
3.128427988 % 

 0 
0.25 
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1.316058 
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1.428203 
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where R = r/b and baR =0 . 
From equations (17) and (18), one gets 
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Initial yielding 
 

The maximum value of rrTT −θθ  occurs at radius 
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 (say), which depends  

upon the values of k and c. For example if we take c = 0, 
0.25, 0.5 yielding starts at the internal surface for values 
of k = 1.273459, 1.316213, 1.374582 respectively and for 
values of k = 1.5, 1.571429, 1.666667 yielding starts at 
the external surface (Table 1). For yielding at 1RR = , 
equation (19) becomes 
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and the required pressure for yielding is 
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Using equation (21) in equations (17) and (18), we get 
the transitional stresses in non- dimensional form as  
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Fully plastic state 
 
Stresses for fully-plastic state are obtained from equation 
(17) and (18) by taking 0→c . 
There are 2 plastic zones: 
 
Inner-plastic zone:

10 RRR ≤≤  
 
Outer-plastic zone: 11 ≤≤ RR  
 
For Inner-plastic zone, equation (19) becomes 
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and the required pressure for fully plastic state is given by 
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Using equation (25) in equations (17) and (18), we get 
the stresses for the inner plastic zone as, 
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For Outer-plastic zone, equation (19) becomes 
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and the required pressure is 
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Substituting equation (29) in equations (17) and (18), we 
get the stresses for outer plastic zone as 
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Particular case 
 
For a flat disc (k = 0) elastic-plastic transitional stresses 
(17) and (18) becomes 
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It is seen that rrTT −θθ  is maximum at the internal 

surface and yielding take place at the bore, we have 
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The necessary pressure iP  required for initial yielding is 
given by 
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Using equation (35) in equations (32) and (33), one gets 
the transitional stresses as: 
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Table 2. Pressure required for initial yielding (Pi) and fully plastic state (Pf ) for an Isotropic disc having variable thickness (k = 1.5) and flat disc (k =0) 
for different values of c. 
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variable thickness 

( )
��
�

��
� =

−k

b
rhh 0

 

 
 
 

0.5 ≤ R ≤ 1 
 

 
 
 

c 

 
 
 

k 
 

 
 

Yielding 
Occurs 

at 
r = a r = b 

Pressure 
required 

for 

yielding ip
 

Pressure 
required 
for fully-
plastic 

fp
 

 

Percentage increase in 
pressure 

from initial yielding to 
fully plastic state 

1001 ×��
�

	




�

�
−=

i

f

p

p
P

 
 

0 
0.25 
0.5 

 
1.5 
1.5 
1.5 

 
R1 = 1 

R1 = 0.974854 
R1= 0.965489 

 
h = h0(2.828427) 

h = h0(2.828427) 

h = h0(2.828427) 

 
h = h0 

h = h0 

h = h0 

 
0.4142136 
0.4220108 
0.4271293 

 
0.45308189 
0.45308189 
0.45308189 

 
9.383632136 % 
7.362626636 % 
6.076037342 % 

 

0 
0.25 
0.5 

0.0000 
0.0000 
0.0000 

 

0R
 = 0.5 

h = h0 

h = h0 

h = h0 

h = h0 

h = h0 

h = h0 

0.453082 
0.446627 
0.435243 

1.1716 
1.1716 
1.1716 

158.5786 % 
162.3155 % 
169.1764 % 

 
 
 

( )

( )

1 / 2
0

1 / 2
1 0

1

1

c c
irr

r c c

P RT R
Y R R

σ
− −

− −

� �−
� �= =
� �−� �

 ,      (36)                   

                            
( )

( )

1 2

0 1 / 2
1 0

1
2 1

c

i c c

T c R
P R

Y c R

θθ
θσ

− −

− −

−� 	= = 
 �− � �� � −� �� �

.     (37)                   

                      
For fully-plastic state ( 0→c ) at the external surface (R 
= 1), we have 
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and pressure fP  required for fully plastic state is: 
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                    (39) 
Using equation (39) in equations (32) and (33), one gets 
the stresses for fully plastic state as 
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Numerical illustration and discussion 
 
In Table 1 pressure required for initial yielding and fully 
plastic state for an isotropic disc having variable thick-
ness for different values of c has been given, it can be 
seen from the table that yielding occurs at any rad-
ius 1RR =  or at the internal surface ( 1R  = 0.5) or at the 

external surface ( 1R  = 1) of the disc depending upon 
values of k and c. For example yielding occurs at the 
internal surface of the disc made of compressible 
material (c = 0.25) at a pressure 0.4466247 for k = 
1.3174582 whereas yielding occurs at the outer surface 
at a pressure 0.4035501 for k = 1.571429. It is also seen 
from Table 1 that disc having variable thickness and 
made of incompressible material yields at a higher pres-
sure as compare to disc made of compressible material. 
In Table 2, pressure required for initial yielding Pi and 
fully plastic Pf for an isotropic disc having variable thick-
ness (k = 1.5) and flat disc (k = 0) for different values of c 
has been given. It can be seen from Table 2, that for an 
isotropic disc made of compressible material and having 
variable thickness (k = 1.5) yields at some radius R1 at a 
higher pressure as compare to disc made of incompres-
sible material which yields at the outer surface whereas 
reverse is the case for flat disc, that is, flat disc made of 
incompressible material yields at internal surface at 
higher pressure as compare to disc made of compressi-
ble material. Disc made of incompressible material and 
having variable thickness requires higher % increase in 
pressure from initial yielding to fully-plastic state as com-
pare to disc made of compressible material. In the case 
of flat disc it requires less % increase in pressure from 
initial yielding to fully plastic state as compare to disc 
made of compressible material and much higher percent-
tage increase in pressure is required to become fully pla-
stic as compare o the disc having variable thickness. In 
Figure 2,  curves have   been   drawn   between  stresses 
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Figure 2. Stresses at fully - plastic state for different values of k with respect to radii ratio R = r/b. 

 
 
 

and radii ratio r/b for fully-plastic state. It is seen that cir-
cumferential stress is maximum at the internal surface of 
the flat disc whereas it is maximum at the outer surface of 
the disc having variable thickness. 
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