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It is difficult to track multiple maneuvering targets in clutter due to the uncertain acceleration and the 
disturbance of the clutter. Taking these into account, a strong tracking modified input estimation 
(STMIE) is presented in this paper, which is combined with maximum entropy fuzzy joint probabilistic 
data association for multiple maneuvering target tracking. Strong tracking multiple fading factors are 
introduced in order to enhance the tracking performance of MIE for high maneuvering targets. The 
prediction covariance can be adjusted in real time by the multiple time-varying fading factors and the 
different data channels are faded at different rates. Simulations show the effectiveness of the proposed 
method for the cross and high maneuvering target tracking. Compared with the conventional current 
statistical model (CS) combined with maximum entropy fuzzy joint probabilistic data association, the 
proposed algorithm has higher tracking accuracy and good engineering application prospect. 
 
Key words: Multiple maneuvering target tracking, data association, strong tracking filter, modified input 
estimation, multiple fading factor. 

 
 
INTRODUCTION  
 
With the increasingly complexity of war environments, the 
requirement of target tracking technologies has been on 
the increase. Recently, multi-target tracking has gain wide 
attention. Particularly, with the rapid development of 
modern aviation technology, the maneuverability of fighter 
planes and other aircrafts is growing stronger and 
stronger, which makes multiple maneuvering targets 
tracking an extremely difficult problem in target tracking 
filed. 

In early multi-target tracking algorithm, data associated 
technologies, such as Joint Probabilistic Data Association 
(JPDA) (Fortmann et al., 1983), Joint Integrated 
Probabilistic Data Association (JIPDA) (Musicki and 
Evans, 2004) and Multiple Hypothesis Tracking (MHT) 
(Blackman, 2004), were widely used for multi-target state 
estimation. However, these algorithms have high 
computational complexity. In addition, as the target 
number increases, the computational cost increases ex-
ponentially, seriously affecting the real-time performance. 
Some improved algorithms were proposed (Roecker and 
Pillis, 1993; Roecker, 1994; Purank and Tugnait, 2007), but 
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most of which decrease the computational burden at the 
cost of tracking accuracy. Taking the uncertainty of the 
target motion models into account, maximum entropy 
fuzzy (MEF) joint probabilistic data association filter was 
proposed (Li et al., 2006), clustering the validate 
measurements by a multi-parallel fuzzy clustering 
structure, and reconstructing the association probability 
matrix according to the values of membership. This 
association technology can track cross multiple targets 
well, and has a better real-time performance than the 
JPDA technology. 

For a maneuvering target tracking, Singer (1970) 
suggested a zero-mean, time-correlated maneuvering 
acceleration model, which has been one of the 
foundations in the problem of state estimation for 
maneuvering targets, and varieties of adaptive algorithms 
have been developed in recent years. The “current” 
statistical (CS) model is more realistic than Singer’s 
model on the target mobile pre-assumptions, which is 
recognized as an effective method for maneuvering 
targets tracking (Zhou and Kumar, 1984). However, the 
target tracking accuracy of this method often depends on 
the priori parameters of maneuvering targets, such as the 
maneuvering frequency and maximum acceleration, etc. 
The tracking performance will be seriously affected by 
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inappropriate value of the priori parameters. Interacting 
Multiple Mode (IMM) algorithm, proposed by Blom 
(1988), is considered as a good compromise between the 
tracking accuracy and computational complexity, but the 
tracking accuracy depends on the match degree of pre-
designed models with the actual situation of the 
maneuvering target. In addition, with the increase in the 
number of models, the calculational cost will also 
increase significantly, thus seriously affecting the real-
time performance for maneuvering target tracking. 
Khaloozadeh and Karsaz (2009) introduced a new 
algorithm of state estimation called modified input 
estimation (MIE). The MIE method has provided a special 
augmentation in the state model by considering the 
unknown acceleration vector as a new augmented com-
ponent of the target state, which succeeds in estimating 
the target trajectory, velocity and acceleration in low and 
mild maneuvering situations. However, the performance 
of MIE will be serious degradation for high maneuvering 
target tracking. Fuzzy MIE algorithm was proposed with 
the introduction of a fuzzy forgetting factor or a fuzzy 
fading memory, making an effective improvement of the 
tracking accuracy for high maneuvering target tracking 
(Bahari et al., 2009; Bahari and Pariz, 2009, 2010). 
However, the fuzzy reasoning rules depend on some 
priori knowledge of the maneuvering targets and need 
high computational cost, so this method has a poor real-
time performance, and the tracking accuracy depends on 
the fuzzy reasoning rules designed.  

To solve the aforementioned problems, we have 
proposed a strong tracking MIE (STMIE) algorithm (Yang 
and Ji, 2010), which can properly track a high 
maneuvering target by introducing multiple fading factors 
to adjust the predicted covariance and the corresponding 
filter gain in real time. In this paper, the STMIE algorithm 
will be extended to track multiple maneuvering targets in 
clutter. The crucial idea is that the maximum entropy 
fuzzy joint probabilistic data association filter is intro-
duced and combined with the STMIE method for multiple 
maneuvering target tracking. Simulation results show that 
the proposed method has better tracking performance 
than the conventional method, and has a good 
application prospect in engineering.  

 
 
MIE METHOD 

 
Suppose that the state equation and the measurement equation of 
a single maneuvering target in two-dimensional case are described 
as follows, respectively: 
 

                             (1) 
 

                                                          (2) 
 

Where  is a state vector  

 
 
 
 

at time , including the information of position and velocity, 

 is a measurement vector,  is 

an unknown acceleration vector. and  are the state 
noise and the measurement noise, respectively, and are 
uncorrelated Gaussian white noise vectors. The covariance 

matrixes of and  are and , 
respectively. 
 
The uncertainty of the acceleration vector in Equation (1) makes 
tracking maneuvering target difficult. Khaloozadeh et al. (2009) 
suggested expanding the acceleration vector of the uncertain state 
into a new augmented component of a target state, and converting 
the maneuvering target state model into a non-maneuvering state 
model in augmented state. Augmented state equation is as follows: 
 

                  (3) 
 

                                   (4) 
 
The filter gain is defined as: 
 

     (5) 
 

As can be seen from Equation (5),  is determined by 

the prediction covariance,  and , 

denotes the cross-covariance and is discussed 
(Khaloozadeh and Karsaz, 2009). Usually, when the system 
reaches a stable state, the prediction covariance will tend to the 
minimum. Thus, when a low and/or medium maneuver occurs, 

 will play a decisive role in the filter gain adjustment, 
which guarantees the filter’s convergence. But, when a high 
maneuver occurs suddenly, the residues increases rapidly, while 
the prediction covariance cannot be promptly adjusted, thus 
causing the filter gain to fail reasonable adjustment, eventually 
leading to the loss in the capability of the MIE algorithm for high 
maneuvering target tracking.  
 
 
STMIE ALGORITHM 

 
In order to ensure the MIE filter a strong tracking filter performance, 
multiple fading factors were introduced to adjust the predicted 
covariance (Yang and Ji, 2010). In the light of the design of the 
strong tracking filter, the filter gains must satisfy the following 
equations: 
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To obtain the appropriate time-varying gain 

 needs to be adjusted in real time, that is: 
 

        (9) 
 

where denotes the multiple fading factor matrix, which 
can adjust the prediction covariance in real time by the changes of 
the residues, and thereby adjusting the corresponding filter gain 

. 
 
Multiple fading factor matrix is defined as: 
 

                     (10) 
 

where , the 

derivation of fading factor  refer to (Zhou and Frank, 
1999). 
 
 
Remark 
 
When a high maneuver occurs suddenly, the residue increases 
rapidly, and the prediction covariance will be promptly adjusted by

, thus causing the filter gain to be reasonably adjusted, 

and the  fading the different data channels at different 
rates so that the tracking system can achieve a stable state in a 
short time, so that the STMIE method can properly track high 
maneuvering targets. When tracking system in a stable state, 

 will turn into an approximate unit matrix, and then the 

STMIE method will degenerate into the MIE method.  will 
play a decisive role in the filter gain adjustment, which can better 
maintain the system stability and achieve the optimal estimation of 
the target state and guarantee the filter’s convergence. 
 
 
MAXIMUM ENTROPY FUZZY JOINT PROBABILISTIC DATA 
ASSOCIATION 
 

Suppose a measure set is related to the 

target set . The clustering process can be 
formulated as an optimization problem and the corresponding cost 
function is defined as: 
 

                                                   (11) 
 

where  and  are the squared Euclidean distance 

and the degree of membership between the given data point  

and the cluster center , respectively.   subjects to the 
following constraints:  
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                                                     (12) 
 
According to the information theory, in order to minimize unbiased 
membership between the data points and the cluster center, the 
objective function is defined according to the maximum entropy 
principle as follows (Li et al., 2006): 
 

       (13) 
 

where and are the Lagrange multipliers. By maximizing 

Equation (13), the membership function of the data  belonging 

to a cluster center  is derived as: 
 

                                                              (14) 
 

By varying , it adjusts the value of membership of data point

with its nearest cluster center . is known as the 
“discriminating factor” (Li et al., 2006), where the proposed optimal 
value is given as: 
  

min
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( , )j iopt d z c

εα = −                                                                      (15) 

 

where  is a small positive constant. 
 
In case of multiple target tracking, we need reconstruct the 
association probability matrix: 
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]where is the association probability between the measurement 

 and the target , 
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Because of the complexity of environment and the inaccuracy of 
sensors, there are some conflict and ambiguity in data association. 
For example, one measurement may be associated with multiple 
targets, or multiple measurements originate from one target. In 
order to deal with these problems, the association probability matrix 
should be reconstructed according to the following rule: (i) If the 

measurement  is only associated with a target, the 
association probability remains the same; (ii) If the measurement 

 is associated with multiple targets, we reconstruct the 
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Table 1. Simulation parameters of two high maneuvering targets. 
 

Simulation Initial Position (m) Initial velocity (m/s) 
Acceleration (m/s

2
) 

0 - 20s 21- 40s 41 - 90s 

Target 1 (100,400) (80,100) (0,0) (5,10) (0,-20) 

Target 2 (100,10000) (80,-100) (0,0) (5,-10) (0,20) 

 
 
 

association probability matrix  and process the uncertainty 
according to Equation (18): 
 

                                        (18) 
 

where  is the set of all tracks associated with measurement 

. 
 
 
STEPS OF THE PROPOSED METHOD FOR MULTIPLE 
MANEUVERING TARGET TRACKING  
 

Assuming that  are the optimal 

estimations of  targets at time  in the fusion center, 

are the corresponding state 
covariance matrices. Then, the iterative steps of the STMIE 
algorithm for the optimal multiple maneuvering targets estimation at 

time  are thus explained in steps: 
  

 
Step 1: The prediction of augmented states and measurements can 
be calculated by Equations (19) and (20): 
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Step 2: Confirmation of effective measurements corresponding to 

the targets according to the equation: 
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Step 3: Calculation of multiple fading factor matrix  

according to Eq. (10). 
 
Step 4: Prediction of covariance. 
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Step 5: Reconstruction of the association probability matrix  by 
Equation (16) and processing the uncertainty by Equation (18).  
 
Step 6: Update of State: 
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Step 7: Update of covariance: 
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SIMULATION RESULTS AND ANALYSIS 
 
The purpose of this example is to compare multiple 
maneuvering targets tracking between the proposed 
algorithm (STMIE-MEF) and the traditional “Current” 
Statistical (CS) (Zhou and Kumar, 1984) method 
combined with MEF (CS-MEF). Assuming that there are 
two maneuvering targets, first, they take uniform motion, 
then, high maneuvering turns occur at the 21

st
 second 

and 41
st
 second, respectively. The two targets cross two 

times one after another in the motion. Simulation 
parameters are shown in Table 1. The covariance 
matrices of system noise and measurement noise are 

selected as  and , 
respectively. Assuming that the clutter density is 1 clutter 
point/km

2
, the maximum acceleration in CS method is 

100 m/s
2
 and the jerk frequency is 0.1.  in 

Equation (15). The real tracks and the estimated tracks 
by the proposed method and the CS-MEF method are 
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Figure 1. Real tracks and estimated tracks. 

 
 
 

 
 
Figure 2. Position RMSEs of target 1. 

 
 
 

 
 
Figure 3. Position RMSEs of target 2. 
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Figure 4. Speed RMSEs of target 1. 

 
 
 

 
 
Figure 5. Speed RMSEs of target 2. 

 
 
 
shown in Figure 1.  

Figures 2 to 7 illustrate the RMSEs of position, speed 
and acceleration, respectively. As can be seen from 
these figures, it can be concluded that the STMIE-MEF 
can perform better than the CS-MEF method. At the 21

st
 

second and the 41
st
 second, two high maneuvers happen 

to the targets one after another, the STMIE-MEF 
algorithm has the fastest speed of convergence, which, 
especially, can be seen in Figures 6 and 7. As the 
multiple fading factors take full advantages of the useful 
information about the residues, they are able to adjust the 
prediction covariance and the corresponding filter gain in 
real time, which makes the filter converge rapidly in a 
short time. While the CS-MEF algorithm needs the prior 
information of the maneuvering targets, uncertain 
maneuvering information causes the estimation of target 
states to be inaccurate, making the tracking accuracy 
inferior to the proposed method. From Table 2, the same  

0 2000 4000 6000 8000 10000 12000 14000
-5000

0

5000

10000

15000

X (m)

Y
 (

m
)

 

 
Real STMIE-MEF CS-MEF

0 20 40 60 80 100
0

50

100

150

200

Time (s)

P
o

s
it

io
n

 R
M

S
E

s
 o

f 
 t

a
rg

e
t 

1
 (

m
)

 

 
STMIE-MEF CS-MEF

0 20 40 60 80 100
0

50

100

150

200

Time (s)

P
o

s
it

io
n

 R
M

S
E

s
 o

f 
ta

rg
e

t 
2

 (
m

)

 

 
STMIE-MEF CS-MEF

0 20 40 60 80 100
0

20

40

60

80

100

Time (s)

S
p

e
e

d
 R

M
S

E
s

 o
f 

 t
a

rg
e

t 
1

 (
m

/s
)

 

 
STMIE-MEF CS-MEF

0 20 40 60 80 100
0

20

40

60

80

100

120

Time (s)

S
p

e
e

d
 R

M
S

E
s

 o
f 

ta
rg

e
t 

2
 (

m
/s

)

 

 
STMIE-MEF CS-MEF



3352          Int. J. Phys. Sci. 
 
 
 

 
 
Figure 6. Acceleration RMSEs of target 1. 

 
 
 

 
 
Figure 7. Acceleration RMSEs of target 2. 

 
 
 

Table 2. Comparison of the two algorithms for two high maneuvering targets tracking. 
 

Simulation Algorithm 
RMSE 

Position (m) Velocity (m/s) Acceleration (m/s
2
) 

Target 1 
STMIE-MEF 36.63 17.41 4.96 

CS-MEF 56.65  39.05  13.12 

     

Target 2 
STMIE-MEF 38.50 16.47 4.88 

CS-MEF 58.58 36.35 12.03 

 
 
 
conclusion can be obtained. In addition, we can calculate 
the tracking accuracy in position and velocity of the 

STMIE-MEF method to be about 30 and 50% higher than 
that of the CS-MEF algorithm, respectively. 
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CONCLUSIONS 
 
In this paper, a new filtering algorithm STMIE-MEF is 
proposed on the basis of strong tracking filter idea and 
maximum entropy fuzzy joint probabilistic data 
association for tracking multiple maneuvering targets. 
The multiple fading factors are introduced in order to 
adjust the prediction covariance and the corresponding 
filter gain in real time, making the filter converge rapidly in 
a short time. Particularly, the proposed method has a high 
tracking accuracy for high maneuvering targets tracking. 
Simulation results are compared with the CS-MEF 
method, showing the effectiveness of the proposed 
method in tracking high maneuvering targets. 
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