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The general classes of medical image processing and analysis procedures carried out over scalar 
images (viz. registration and visualization of X-ray, CT-scan, filtering, image segmentation, ultrasound, 
diffusion weighted MRI and others) need to be enlarged to diffusion tensor magnetic resonance 
imaging (DT-MRI) tensor fields in order to bring together qualitative and quantitative information, 
potentially advancing computer assisted diagnosis, following up best treatment and checking for major 
neuropsychiatric ailments and statistical analysis of structural and functional unpredictability of 
individual anatomy of human being. Moreover, DT-MRI offers a measurement of a symmetric second 
rank translational diffusion tensor D of water molecules for each voxel within an imaging volume. 
Recently, various results concerning to noise in the estimate of diffusion tensor via an ideal DT-MRI 
experiment using Gaussian distribution have been established by Pajevic et al. (1999; 2003). In this 

analysis, second order symmetric diffusion tensors were arranged in the form of 6 1 vector random 
variables. Forming such a vector, random variable’s combination sometimes rise up the circumstances 
that do not preserve certain intrinsic algebraic relationships among the components of D and its 
geometric character with reference to laboratory co-ordinate systems in which it is measured. Here, our 
main object is to address the problem of applying spatial transformations (sometimes called image 
warps) to DT-MRI using certain geometric operations, viz. conformal collineation, affine collineation, 
isometric collineation and projective collineation which would most probably introduce some new 
dimensions in favor of DT-MRI studies. To study such spatial transformations, we put forward a natural 
interpretation of the “degree of connectivity” between two adjacent points of fiber or fibers in the 

manifold of human brain. This is because of the reason that diffusion operator  can 

naturally be associated with a Riemannian metric tensor G via the relation  and once we have 
the metric tensor G, we will be able to apply geometric operations of Riemannian geometry to DT-MRI 
study. Also, in the present article we shall discuss geodesic fibers of cortical brain manifold up to large 
extent. 
 
Key words: Diffusion tensor, magnetic resonance, DT-MRI, spatial transformation, warp, Riemannian manifold, 
affine collineation, isometric, conformal, degree of connectivity. 

 
 
INTRODUCTION 
 
Diffusion tensor magnetic resonance imaging (DT-MRI) is 
a thrilling recent technique in neuroscience that paves the 
way to enumerate the self-diffusion of water molecules in 
biological tissues (especially in brain tissues). It  is  based  
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upon the phenomenon of molecular diffusion which refers 
to as random movement of molecules through space 
driven by their internal thermal energy, sometimes called 
Brownian motion or zig-zack motion named after the 
great English Botanist Robert Brown, who in 1827 
observed the constant movement of corpuscle particles 
suspended within grains of pollen. Now, it is well known 
that the molecular self-transportation is affected by the 
features  of  the  medium  in  which  it   occurs   and   that  
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Figure 1. Difference between unrestricted (isotropic) and restricted (Anisotropic) 
diffusion within the brain. The shape of the tensor ellipsoid is determined by the 
strength of the diffusion along three principal directions (its eigenvectors). In 
nonrestrictive media such as cerebrospinal fluid, where diffusion is equal in all 
directions, the tensor can be visualized as a sphere. In restrictive media such as 
white matter, where diffusion is different in all directions, the tensor can be 
visualized as an ellipsoid (Kubicki et al., 2002). 

 
 
diffusion along fiber tracts in vivo reflects both the tissue 
structure and architecture at the microscopic level. Equal 
or isotropic (Figure 1) diffusion occurs when a medium 
does not restrict the molecular self-transportation, as in 
case of the cerebrospinal fluid. Skewed or anisotropic 
(Figure 1) diffusion often seen in crystal and polymer 
films which is not equal in all direction occurs when a 
medium restricts molecular mobility. In case of brain, for 
instance, the grey matter is an isotropic environment in 
which the diffusion of water molecules is hindered 
symmetrically in all directions. Comparatively, brain white 
matter being formed of axon fibers (which are oriented in 
parallel and which are accompanied by glia cells) allows 
free diffusion along the fibers but hindered diffusion in 
direction perpendicular to fibers. Thus the technique 
particularly used to pursue white matter tracts in the brain 
involves skewed isotropic diffusion process of water 
molecules because the mobility of water molecules is 
restricted perpendicular to the axons oriented along the 
fiber tracts. The region for such perpendicular restriction 
is given by (Kubicki et al., 2002) that the concentric 
structure of multiple tightly packed myelin membranes 
enfolded around the axon fibers. Although, myelination is 
not essential for diffusion anisotropy of nerves, but myelin 
is basically considered to be the major barrier to diffusion 
in white matter tracts. Moreover, the diffusion coefficient 
involved in the study of DT-MRI is a measure of the 
molecular motion in the biological tissues and it can be 
determined by applying successive magnetic field 
gradient pulses and then measuring the change between 
the images obtained.  

In isotropic (Kubicki et al., 2002) media, where diffusion 
along the three main axes is equal, the diffusion tensor  is 

symmetrical in all directions and is visualized as a 
sphere. In anisotropic media, where the diffusion is 
different along each axis, the diffusion tensor is visualized 
as an ellipsoid, with its longest axis indicating the 
greatest of the so-called principal directions of diffusion. 
The shape of the tensor ellipsoid (Figure 1) depends on 
the strength of the diffusion along the three principal 
directions (that is, its eigenvectors). Within myelinated 
white matter fiber tracts, the greatest principal direction of 
diffusion will always indicate the axonal trajectory, since 
perpendicular diffusion is restricted by myelin covering. 
The shape of the tensor ellipsoid therefore provides 
qualitative and quantitative measures of white matter 
tracts within the brain. 
 
 
Basic principles and known results of DT-MRI 
 
The philosophy of diffusion MRI was put forwarded in the 
mid-1980s by Le Dihand et al. (1995; Taylor et al., 1995), 
who merged nuclear magnetic imaging (NMR) principles 
with those introduced earlier to programmed molecular 
diffusion effect in NMR signals by using magnetic field 
gradient pulses (Stejskal et al., 1965) Molecular diffusion 
refers to random translation motion of molecules, also 
called Brownian motion, that produces from internal 
thermal energy carried by these molecules. As diffusion 
is the process by which molecules are transported from 
one medium to another. The flux of diffusion molecules is 
a result of their random Brownian motion in concentration 
gradients and is described by Fick’s law. Diffusion tensor 
magnetic resonance imaging (DT-MRI) records the 
diffusion characteristics  of  water  molecules  along  fiber 



942          Int. J. Phys. Sci. 
 
 
 

 

 

 

 

 

 

                    (a)                   (b)      (c)  
 

Figure 2. Illustration of the different shapes of DT ellipsoids and the corresponding distribution 
of eigenvalues. (a) Isotropic DT is represented by a spherical ellipsoid; these measurements 
arise when diffusion is unhindered in all directions, as in regions of cerebro-spinal fluid (CSF) in 

the brain, or when it is hindered equally in all directions, as in grey matter:  1=2=3 – Isotropic 
DT. Prevalent in CSF and grey matter regions of the brain. (b) Oblate DT is represented by a 
pancake shaped ellipsoid; this type of measurement can arise when tissue structure is planar, 

such as when white matter fibers intersect within a voxel: 1=2>>3 – oblate DT. Arise in white 

matter regions. (c) Prolate DT is represented (Alexander et al., 2001): 1>>2 =3 – Prolate DT. 
Prevalent in white matter regions 

 
 
 
tracts. Furthermore, diffusion, truly being a three-
dimensional process and hence molecular mobility in 
tissues might not be same in all direction. Therefore in 
DT-MRI, for each voxel of the 3-D image, there is 
assigned a rank three second order diffusion tensor, 
which forms a 3-D tensor filed. Each individual tensor is 

expressed as a 33 positive semi-definite matrix with 
non-negative latent roots. The physical basis of DT-MRI 
is the assumption of normal or Gaussian distribution of 
water molecules random displacement using some 
suitable probability density function (PDF). However, the 
DT-MRI studies have limited capabilities of resolving 
multiple fiber orientations within one voxel, which is 
mainly due to second order diffusion tensor which is 
inadequate to characterize the diffusion process in 
biological tissues. In heterogeneous structure, such as 
brain white matter and other absorbent structures, the 
translational mobility of molecules should be affected by 
the confining boundaries of tissues. Thus, while imposing 
spatial transformations and restrictions on the diffusion 
process, the PDF of molecular random displacement 
should no longer be Gaussian. To study such a 
complicacy, (Chunlei et al., 2004) have been proposed 
an approach of characterizing non-Gaussian diffusion by 
using generalized DT-MRI, in which they introduced an n-
th order diffusion tensor together with a reconstructed 
PDF for the spin displacement. (Alexander et al., 2001) 
have addressed the problem of applying spatial 
transformations (or image warps) to DT-MRI and have 
discussed how to handle these MR images when they 
are transformed spatially during image registration. They 
proposed that size, shape and orientation of the  ellipsoid 

formed under spatial image transformation of an image 
are the three prime features (Figure 2) and may be 

characterized by the latent roots  and 

their corresponding latent vectors  from the 
DT. Further, spatial normalization and reorientation of 
diffusion tensor field has been an extensive area of 
research in neuropsychology. Dongrong et al. (2003) 
have discussed that spatial normalization of DT requires 
an appropriate reorientation of the tensor on each voxel, 
in addition to its relocation into the standard space. This 
appropriate tensor reorientation is determined by the 
spatial normalized transformation and from an estimate of 
underlying fiber direction. Now, following are some known 
results on DT-MRI, which will be used in our proposed 
study under consideration. 
 
 
The diffusion tensor  
 
With plain diffusion MRI, diffusion is fully described by a 
single scalar parameter, the diffusion coefficient D (Denis 
et al., 2001). The influence of diffusion on MRI signal 
(most prominently a spin-echo signal) is a reduction A 
which has dependence on D and on the “b factor”, which 
illustrates the gradient pulses (viz. timing, amplitude and 
shape) used in the MRI sequence (Le Bihan, 1991) 
   

                                      (1) 
 
However, in the presence skewed-isotropy, diffusion of 
molecular mobility in the biological tissues of brain can no  
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Figure 3. Corpus callosum: The diffusion tensor, axial slices. Diffusivity along x, y 
and z axes, shown in Dxx (a), Dyy (d) and Dzz (f) images respectively is clearly 
different in white matter, especially in the corpus callosum. Non-diagonal shadow 
images [Dxy (b), Dxz (c) and Dyz (e)] are not noise images because the x, y, z 
reference frame of the MRI scanner does not coincide with the diffusion reference 
frame of tissues in most voxels (Denis et al., 2001).  

 
 
 
longer be described by a single scalar coefficient. For this 

purpose a tensor  has been set up, which completely 
analyzes the hindered or restricted diffusion of water 
molecular mobility in all directions to the fibers [Figure 3] 
(Stejskal et al., 1965): 
  

                          (2) 
 

This tensor is symmetric . In 
a 3-dimensional continuum having co-ordinate system 

 which coincides with the principal or self-
directions of diffusivity, the off-diagonal elements do not 
come into existence and the tensor is reduced merely to 

its diagonal elements, , which represent 

molecular mobility along the new axes  
respectively. 

By virtue of this, the echo-reduction A becomes: 
 

 ,                       (3)                                           
 

where  are the elements of matrix , which now 
replaces the b factor. 

In practice, the diffusion measurements are made with 

reference to the frame of MRI scanner gradients, 
which usually does not coincide with the diffusion 
continuum of brain tissues and hence one must also 

consider the coupling of the off-diagonal elements,   of 

the matrix  with the off-diagonal elements  of 
the diffusion tensor, which provides correlation between 
molecular transportation in perpendicular direction to 
fibers (Basser et al., 1994): 
  

            (4)                                                                  
 
or 
 

          (5)
   
Hence, it is remarkable that while using diffusion 
encoding gradient pulses along one direction only, say x, 
signal reduction not only depends on the diffusivity along 
that direction but may also include contribution from other 
directions, say y and z. 

Also, this diffusion tensor, expressed as 33 matrix 
captures directional variation in the diffusion rate. As 
diffusion tensor is a second order symmetric tensor 

andthus expressible as 33 symmetric matrix, then by 
definition, it would have three real latent roots 

 and each latent root would have 

corresponding latent vector , respectively. 
By tensor visualization technique, it is emphasized that 
the diffusion tensor is geometrically equivalent to an 
ellipsoid, with the three latent vectors of such a matrix set 
as the radii of ellipsoid. The ellipsoid would match the 
shape that molecular mobility diffuses to from the data 
point in a fixed amount of time. Figure 4 illustrates three 
types of spatial diffusion. 
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Figure 4. Ellipsoids illustrating diffusion tensor according the latent system of the tensor, (a) linear 
skewed-isotropic diffusion (b) planar skewed-isotropic diffusion (c) isotropic diffusion. 

 
 
 

However, the tracts of complex diffusion anisotropy, 
such as the area where two fiber bundles intersect or 
touch each other, a second order tensor could not 
accurately illustrate the diffusion process and hence 
these tracts of uncertainty would be addressed with a 
generalized diffusion technique that would have 
comparatively more degree of freedoms.     
 
 
Mean diffusivity  
 
In order to receive a complete evaluation of the diffusion 
in a tract of axon fiber, we must avoid skewed-isotropic 
diffusion effects and limit the result to an invariant, that 
is,, a quantity which is independent of the orientation of 
the reference frame (Basser et al., 1994). Among various 
permutations of the tensor elements, the trace of the 
diffusion tensor, 
  

                          (6)                                                               
 
is one of the rotationally invariant. The mean diffusivity is 
then expressed as: 
 

,                    (7) 
 
where  are the latent roots (or principal 

diffusivity) of  and and are its leading 
diagonal entries measured in the laboratory reference 
Frame.  
 
 
Proposition of Fick’s first law  
 
In a real 3-dimensional manifold (Basser et al., 1994), the 
particle flux vector, that is, a tensor of order one is 
represented by: 

.                        (8)                                                                   
 

Here,  are a set of orthogonal unit vectors and 

 is the component of F along the direction 

of . Also, in Equation (8), Einstein’s summation 
convention has been followed. 

The macroscopic analysis of normal or Gaussian 
diffusion is based upon the proposition of Fick’s law, 
which states that “the flux F of the diffusion substances is 
directly proportional to the concentration gradient”, that is, 
 

.                                      (9)          
 

Here, C is the concentration gradient,  is the j
th 

spatial 

co-ordinate,  is an element of second order self-

diffusion tensor and  is the i
th
 component of the flux 

vector F.  
Thus, the Fick’s law assumes a linear relationship 

between the flux and the concentration gradient for a 
skewed-isotropic diffusion tensor. 

Most probably, many mathematical quantities could be 
derived from the higher order tensors. For instance, the 
complete characteristics of the higher order tensors can 
be reduced to offer single numbers (scalar and vector) for 
a description of the features of essential diffusion 
process. From this stand point, tensor contraction is a 
crucial operation. Full contraction of an even order tensor 
of rank n is defined like; 
 

                       (10)                                                                        
 

where  is a real manifold symmetric metric tensor 
which for a Cartesian co-ordinate is an identity matrix and 

 is  a scalar invariant, also called the trace of a tensor  



 
 
 
 
of rank n.  

 
 
Steady-state concentration  

 
3-D tensor field as conductivity tensor (Donnell et al., 
2002) used the Fick’s first law to estimate white matter 
connectivity in diffusion tensor MRI. In such estimation, 
Fick’s first law relates a concentration difference to a flux 

(a flow across a unit area), which states that the flux , in 
any direction is proportional to the concentration gradient 

in the opposite direction. The constant of propor-

tionality  is the diffusivity along the direction under 
consideration; 
 

                                     (11)                                                                             
 
Since, the flow filed of water molecules does not follow 
the concentration gradient directly, as the material 
property of axon fiber also affect diffusion and hence the 

diffusion tensor  is introduces, that is, 
  

                                                 (12)
                                                                                     
The standard model of diffusion explores that over time, 
the concentration gradient of the solute will change as the 
divergence of the flux, that is, 
 

 .                      (13)                                                                          
 
This is due to the conservation of mass. 

 
 
SPATIAL TRANSFORMATION OF DT-MRI USING 
CERTAIN GEOMETRIC OPERATIONS 

 
A natural elucidation of the ‘degree of connectivity’ 
between two adjacent or neighboring points is the 
measure or distance between the points in some metric 
manifold. However, in our proposed study, the distance 
between two points of a fiber or fibers or two anatomical 
positions would depend on the nature of diffusion tensor 
filed. 

The diffusion tensor under consideration could likely to 

be connected with a Riemannian metric tensor  

via the relation . Obviously, this relation can allow 
us computing various geometric quantities, like distance 
between two points in the brain and other anatomies of 
body, length of the axon fibers, inclination of fibers and 
geodesic paths etc. Also, once we have the fundamental 
metric tensor, we can calculate different spatial 
transformations of DT-MRI. Here, we shall first like to 
briefly discuss the manifold of diffusion tensors as 
described by (Fletcher et al., 2004). 
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Manifold generated by diffusion tensor 
 
Diffusion tensor magnetic resonance imaging produces a 

3D diffusion tensor of second order, that is, a 33 
symmetric positive definite matrix, at each voxel of an 
imaging volume. This tensor represents the covariance in 
a Brownian motion model of water diffusion at that 
individual voxel. Also such a 2-tensor has been 
commonly used to approximate the diffusion profile at 
each lattice point of the image lattice (Basser et al., 
1994). The approximation yields a diffusion tensor data 
set which is a matrix valued image. These tensors are the 

elements of the manifold of 33 positive definite matrix 
denoted by PD(3). Mathematically, the positive definite 
diffusion tensor belongs to a curved symmetric manifold 
somewhat like Riemannian symmetric manifold, that is, 
the space of diffusion tensor can be thought to be a 
Riemannian symmetric manifold rather than a linear 
manifold. Moreover, Riemannian symmetric manifolds 
can thought to be connected Riemannian manifolds M 

such that for each , there is an isometry  which 

(i) is involute, that is,, , and (ii) has x as an 
isolated fixed point, that is, there is a neighborhood U of x 

where  leaves only x fixed. However, while applying 
the geometric operations to the diffusion tensor, we shall 
make use of the concepts of symmetric spaces as 
studied by (Kumar’s Thesis, 2008): 

A curved manifold (that is, Riemannian manifold) of 

class  of any dimension is said to be Riemannian 
symmetric in the sense of Cartan (1925), if it satisfies the 
following identity: 
 

                                  (14)                                                           
 

where ,or  is the well known Riemannian 
curvature tensor defined as 
 

                 (15)                                                        
 

and del followed by a subscripted index stands 
for the operator of covariant differentiation with respect to 

the symmetric connection .  
 

Also, if we contract the Equation (14) with respect to the 
indices , we get the following expression: 
 

,                                    (16)                                                                              
 

where  is called the Ricci tensor or contracted 
curvature tensor and if the expression (16) holds good in 
the given curved manifold, we shall say that the manifold 
under consideration is Ricci symmetric or Riemannian 
semi-symmetric.  

Thus, it is evident that if the manifold of diffusion tensor  
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is Riemannian symmetric, it is naturally a semi-symmetric 
manifold. 

Let us now proceed to discuss the spatial transforma-
tions for DT-MRI with the following mathematical 
analysis: Firstly, in order to calculate the inverse of 
diffusion tensor (2), consider the co-ordinate 
transformation of flux vector (9), as: 
 

 ,                                    (17)                                                                                   
 
where the prime is used to distinguish co-ordinate 
systems.  
 
This transformation law is what defines a tensor of rank 
first. If one wanted to transform the co-ordinates in other 
direction, from prime co-ordinate system to unprimed, 
one would use the inverse transformation matrix 
 

,                                    (18)                                                                         
 

where   is the transpose of .  
 
This means that to obtain the inverse of the 
transformation in Equation (17), one only need to switch 

the rows and columns in the 3  3 transformation matrix. 
Also a transformation of co-ordinates from one system to 
another and then back again should produce the original 
co-ordinates and hence: 
 

 ,  
 

where  , the Kronecker delta, is essentially equivalent 
to the identity matrix. Evidently the conjugate or 

reciprocal of the diffusion tensor , written as  

would be the inverse tensor of . Now since the 
Riemannian metric tensor and diffusion tensor are 

connected by the relation , therefore in view of 

the aforementioned detail, . 
The study now considers a continuous curve C in the 

sense of axon fiber of brain tissue lying in the manifold of 
diffusion tensor (that is, a Riemannian symmetric 
manifold). Let the parametric equation of C be 

, where t is some parameter, then the length 
ds of the element of individual axon fiber joining the two 

adjacent points  would be given by the 
measure function. 
 

                                  (19)                                                     
 
So far, it’s only defined for Euclidean manifold, but once it 

is defined in this way, it does transform as a  tensor as 
follows: 

 
 
 
 

 ,                                  (20) 
                                      
where we have defined the conjugate diffusion tensor 
  

 as  . 
 
Thus, the arc length of entire axon fiber corresponding to 

the values  of the parameter is defined as 
 

.                                  (21) 
 

If we replace the upper limit , we will have  as a 

function of . Hence, if  be the co-ordinates of any 

diffused water molecule along any axon fiber,  must be 

functions of the arc length  of fiber measured from a 
fixed point. It then follows from Equation (21) that: 
 

,                      (22)  
 

which shows that  is a unit tangent vector.  
 
The study now proceeds to calculate the inclination 
between any two axon fibers and then try to calculate the 
same between any two fiber tracts or voxels of an 
imaging volume, whenever due to some kind of 
neuropsychiatric disorder, these axon fibers lose their 
original parallel orientations. 

Suppose that we are give two individual fibers of the 

brain tissue, which we denote by  passing 

through any point  and defined by 
 

,  
 

where  are nothing but the arbitrary parameters, 
then if the diffusion of water molecules along each fiber 

tract is isotropic, the angle  between these two fibers 
will be defined as the angle between the hyperspheres 

which are orthogonal to the fibers  

respectively. Here  are the operators of 

differentiation with respect to the parameters  
respectively.  Then by the usual formula; 
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Figure 5. Angle between two hyperspheres as an angle between two 
intersecting circles. 

 
 
 

where , 
 
we get 
 

 
 
 

where the symbol  etc. is used to 
denote the scalar product of the enclosed quantities.  

If we now set , a conformal 
structure would be defined in the neighborhood of point 

by the quadratic form , which is positive 

definite in the Riemannian symmetric manifold . 

Thus  would then be written as; 
 

                   (23) 
 

The following Figure 5 depicts angle between two 
hyperspheres (orthogonal to considered fibers) which is 
an angle between two intersecting circles having centers 

at a and b. The equation  may define an 

isotropic cone and since  is the 
positive definite; this cone will be purely imaginary. 
However, the same angle could be calculated by 

assuming two tangent vectors  to the fibers 

, such that: 
 

,                     (24)  
                                                    
 

where , as  are 

fibers depending upon the arbitrary parameters , 
respectively.  

 
Now, both the formulae given by equations (23) and (24) 
are quite similar, but using formula (24), wherein the 
tangent vectors are involved the isotropic behavior of 
diffusion tensor could not be directly introduced by means 
of hyperspheres generated by Brownian motion of water 
molecules. 

There is another interesting case which we seem 
necessary to introduce, that is, instead of considering any 
two individual fibers of brain tissues, we consider the 
whole fiber tract. In this case, one can think the fiber tract 

as a hypersurface which is a variety of our  

manifold. Let  be the scalar functions of co-

ordinates . Then  
will be the two families of fiber tracts. From these fiber 

tracts, it is evident that , 

which simply imply  is orthogonal to  
respectively and hence the gradient vector to the fiber 

tract, that is,  are normal to both  and 

. Now, if the aforementioned fiber tracts are 

mutually inclined at an angle , then  will also be an 
angle between their respective normals, that is, 
 

.                      (25)                                                         
 
In case if we take the fiber tracts as the co-ordinate fiber 

tracts of parameters , then 
 

                (26)                                              
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Thus if be the angle between co-ordinate fiber tracts, 
we have 
 

                                    (27)  
                                                                    
It follows from equation (27) that if the co-ordinate fiber 
tracts become orthogonal due to some neuropsychiatric 

disorder, then  as . 
Mathematically, we can say that in case if fiber tracts lose 
their original orientations and become orthogonal, the 
inverse diffusion process inside them will vanish and 
thereby diffusion process may run indefinitely and 
infinitely.   
 
 
Comparison of two fibers by means of involute-
evolute geometry  
 
Here, we discuss a comparison theory of two fibers of an 
individual fiber tract based on their geometric 
configurations. In this case, we let that there in a one-to-
one correspondence between the water molecules (at 

some specific time) diffused along the fibers   
and that the 1-1 correspondence is such that the tangent 

vector at any water molecule of  at that specific instant 

is normal to the corresponding water molecule of , 

then by definition,  is called an involute of  and  

is called an evolute of . Thus by adopting this theory, 
one can completely characterize the geometric property 
of brain tissue. Let , (where s being the arc 
length parameter) be the vectorial equation of the fiber 

, then the position vector of any water molecule  at 
some specific instant is given by; 
 

,                                     (28)                                                                  
 

where  is to be determined. Differentiating Equation (28) 

with respect to , we obtain 
 

 

 
 
 
 

But  is curvature and n is 
the normal vector. Therefore, we have 
 

                      (29)                                                              
 

By definition,  is perpendicular to  (Figure 6), so 

taking dot product on both side of Equation (29) with  

and using , we have  

or, , which on integration implies 

, c being some constant of 

integration. Therefore, , which is the 

equation of involute  of the evolute . On substituting 
the values of in Equation (29), we get 

, which implies  is parallel to n. We 
now take the positive sense along involute fiber such that 

, so that last expression yields . 
Thus once we have the equation of either of the fiber 

(  ), we can analyze much more geometric 
features of others. 
 
 
Fiber geodesics measurement using affine 
connection 
 

As it is well known that the manifold of diffusion tensor is 
a curved manifold which is really a Riemannian 
symmetric manifold. Hence such a hypothesis may lead 
to the very desirable geodesics equations which are 
essential to define statistical methods for diffusion 
tensors. Moreover the white matter seen in DT-MRI as a 

3D manifold  and thereby the fibers become 
geodesics of this manifold. The approach of calculating 
geodesic distance on the manifold of diffusion tensor 
involves identification of such a manifold. Figure 7 shows 
the diffusion tensors on their underlying manifold (a non-
linear manifold) in which the green dotted line represents 

the Euclidean distance  
between two nearby points which are the elements of 

 and this line does not lie along the manifold while 
the red line represents the geodesic distance along the 

manifold. Thus on  any manifold there are special 
intrinsic curves, called geodesics which are analogous to 

straight lines in Euclidean space . Because 
such intrinsic curves are the curves of shortest distance, 
the problem is given any two points A and B on the 
manifold to find out all the curves joining two points A and 
B those which give the least arc length? To treat this 
problem properly is very typical as the lengths of various 
arcs AB certainly have a non-zero greatest lower and 
least  upper  bounds.  However,  the  problem  leads  to a 
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Figure 6. Two fibers which behave like involute and evolute in the brain 
cortical manifold. 

 
 
 

 

 
 

Figure 7. Manifold structure of tensors. The black surface represents 
the non-linear manifold fitted through the tensors represented as 
ellipses. The green line represents the Euclidean distance between 
tensors treated as elements of PD (3) and the red line represents the 
geodesic distance along the manifold that will be used for all tensor 
manipulations (Khurd et al., 1985).  

 
 
 
very surprising possibility in DT-MRI study, that if we 
have an approximate measure of least and greatest fiber 
in each voxel of brain depending on the size of individual 
brain (that is, a fixed limit of least and greatest fiber in 
smallest and largest brain), we can probably predict 
about the ailments of individual’s brain.  

We, now, define the geodesic fibers as “straightest 
possible” fibers which are not strictly shortest but the 
filaments of stationary lengths in , where the 
straightest means the tangent vector drawn to any water 
molecule diffused along fiber propagates parallel along 
the fiber is still parallel to its initial position, that is,, the 
tangent vectors are auto parallel. 

Let us now consider a fiber  with an arbitrary 

parameterization , which is defined by . 
Let the tangent vector to the water molecule (at some 
specific instant say t0) is 
 

                         (30)                                                                  

Then the fiber  is a geodesic if we have a  
transport function such that; 
 

       (31)                                    
That is 
 

            (32)                            
 
where the “Transport” function has the property that 

 should be invertible 
mapping but is might well depend on the specific fiber 

path chosen to go water molecule from . 
Equation (32) describes a geodesic fiber denoted by 

 of a fiber , such that its tangent vector is auto 
parallel to itself when transported parallel along the fiber. 
The Equation(32) may be written in infinitesimal form by 

differentiating with respect to  and letting  

 as follows: 
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, 
 
which in local co-ordinates takes the form: 
 

, 
 
that is 
 

, 
or alternatively 
 

.          (33)
                                             

Substituting for  from Equation (30), Equation (31) 
implies 
 

,            (34)                           
 

which is the fiber geodesic of a fiber  and 

the symbol  is a well known affine connection which in 
case of torsion free metric connection becomes 

Christoffel’s second kind bracket , 

where  are the components of reciprocal diffusion 
tensor.  
 
 
Fiber geodesics in case of torsion full affine 
connection 
 
However, due to the above reason, there arises a 
particular case where the affine connection is not a 
torsion free one, and then what would be the equation of 
fiber geodesics? That is when the diffusion of water 
molecules along particular fiber geodesics is hindered 
and propagates along the binormal direction of 
geodesics, and hence diffusion becomes anisotropic, 
then to calculate geodesic fiber, one must introduce the 
following geometry: 

Let  be an affine connection defining the fiber 

geodesic , then a tensor of type  defined by: 
 

 
 
where the square index bracket stands for the anti-
symmetry of affine connection is called the torsion of the 
connection which in general is the arc rate of rotation of 
binormal vector drawn to any water molecule to show the 
presence of anisotropic diffusion in the fiber geodesics 
under consideration. This torsion may arise from the part 
of parallel transport operation that is independent of 
geodesics but may play a vital role in the study of DT- 

MRI. Also, it is well  known  that  affine  connection  is 

 
 
 
 

called symmetric if , where 
the round index bracket stands for the symmetry of 
connection. With the help of above relations, we start to 

calculate  with non-metricity of as follows: 
 

,                       (35)                                                                    
 
where del followed by subscripted index stands for the 
operator of covariant differentiation with respect to 
symmetric affine connection. And now, rewrite Equation 
(35) as follows; 
 

    (36) 
 
Consider a combination of partial derivatives of a 

symmetric diffusion tensor  as  
 

,                      (37)                                            
 
we then compute 
 

         (38)                 
that is, 
 

 .      (39)      
 

 .           (40)                                    
 
We now re-rearrange Equation (40) as 
 

.        (41)                                       
 

Let us now transvect Equation (38) throughout with  
and arrange the indices arbitrarily, we get 
 

,       (42)
                   
which is the expression for affine connection in terms of 

non-metricity of diffusion tensor , its reciprocal 

diffusion tensor  and the torsion tensor  
If we now substitute Equation (42) in Equation (34), we 

get a fiber geodesic in case of anisotropic diffusion along 
the fiber as follows: 

 
 
 

                                                                                (43) 



 
 
 
 

In Equation (43), the combination is                  
sometimes called co-torsion of the geodesic fiber. 

Here are few more things about our affine connection 
that if we define two parallel transports by means of two 
affine connections namely; 

, where  is 

taken by moving along the fiber  so that the limit 

approaches to some trivial fiber  and  on the same 
diffusion manifold. Then their difference is also a tensor 

of type  defined as: 
 

.                         (44)                                                                       
 

By this technique, we can easily calculate the 

Riemannian curvature tensor for  as  
 

.                                    (45)
                                                                         
Thus, if we consider an individual voxel or fiber tract of 
brain white matter, we can compare the Riemannian 
curvatures of any two nearby fiber geodesics or fibers by 
means of defining the affine connections. This 
comparison may lead to a crucial analysis of fiber 
tracking and fiber orientations. 

Furthermore, once we have a data set of inverse 

diffusion tensor for any voxel, we can also calculate 
the mean diffusivity of diffusion tensor without seeking its 
latent roots, but by means of affine connection defined to 
that voxel as follows: 
 

 and hence mean diffusivity may 
be given as 
  

.                        (46) 
 
 
Analysis of spatial transformation using lie 
derivatives  
 
The analysis of spatial transformations of DT-MRI using 
certain geometric operations is much more concerned 
with the differential geometry of Lie derivatives in which 
one may model the brain cortical surfaces as manifolds, 
(that is, Riemannian symmetric manifold). The brain 
cortical surface can thought to be a topological manifold 

V with a set of local co-ordinate charts  

where  are open sets on V and the union of  

envelopes the whole manifold V. Also,  is a 

homeomorphism that transforms  to the planar 
parameter domain. Moreover, a Riemannian metric on 
the individual brain cortical surface V is a  quadratic  form 
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given by: 
 

, 
 

where  are local co-ordinates of any point on such a 
cortical surface. Also, all transition functions defined over 
brain cortical surface are analytic (that is,, Cauchy-

Riemann partial differential equations  
are satisfied) and on each chart the Riemannian metric 
will have a special form: 

This kind of local co-ordinates are called isothermal co-
ordinates. Now, we define the Lie derivative denoted by 

 of a tensor with respect to a contravariant vector field 

 as a linear mapping  that is also linear in 

the argument  and satisfy the Leibnitz’s rule on 
cartesian product of tensors; 
 

.  
 
Most probably the differential geometry of Lie derivatives 
can lucidly illustrate the surface based modeling which is 
valuable in brain imaging to help analyzing anatomical 
shape, to detect abnormalities of cortical surface folding 
and to statistically compare 3D anatomical models. 
We, now, consider a point transformation in the diffusion 

tensor manifold  as 
 

 ,                      (47a)                                                           
 

or, in local co-ordinate system  
 

.                           (47b)                                                      
 

Suppose that we have an arbitrary anatomical shape (or 

geometric object)  and we bring back the anatomical 

shape  at  by (the differential of) the 

transformation inverse to , then we would have an  

anatomical shape  at  and we call the difference 

 the Lie difference between two anatomical 
shapes of brain cortical manifold. Let us introduce an 

open parameter group of transformation  

over the  manifold generated by a vector filed  

then   

is called Lie derivative of anatomical shape  with 

respect to  and  is a canonical parameter. 

 
 
Isometric collineation 
 
If the point transformation given by Equation (47a, b)in 

the brain cortical manifold (which are  manifolds) 
does  not  change  the arc length of any individual fiber in 
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the manifold, we say that the transformation does not 

change the metric  and hence the reciprocal 

diffusion tensor . Then such a transformation is called 
isometric collineation or simply a motion. Hence in order 
that a one parameter group of transformation 

 generated by a contravariant vector 

filed  admits a group of isometric 
collineation, it is necessary and sufficient that 
 

, or 
 

.         (48)
                             

Here  are the covariant components of a vector 

field . Thus from Equation (48), we conclude that if the 
Lie derivative of reciprocal diffusion tensor of the brain 
cortical manifold has same values everywhere, the 
anatomical shape of the brain cortical manifold will be 
ideal. 

 
 
Affine collineation or transformation 
 
If the point transformation given by Equation(47a, b) 
defined in the brain cortical manifold does not change the 
torsion free affine connection, that is,, a symmetric affine 

connection  defined on some arbitrary fiber (or fiber 
geodesics) of cortical manifold, we call such a spatial 
transformation an affine collineation or simply affine 
motion. Thus to exist affine motion, we must have a 
relation of the type; 

 

,              (49)                                        

 

where  is the Riemannian curvature tensor as 
defined by Equation(15). Moreover, if two affine 

connections  defined over the fibers  

respectively of  manifold emphasize the same 
notion of auto-parallelism of tangent vectors drawn to 
corresponding water molecules diffused along these 

fibers, then there must exist a co-vector  such that: 

 

.                        (50) 

                                                        
These two connections related in this way are said to 
differ by a projective transformation and we can also call 

them protectively equivalent and the co-vector  may 

assume to be local components of . 

 
 
 
 
Conformal collineation or transformation 
 
We define a conformal map as an angle preserving 
transformation both in the sense of magnitude and 

direction. Suppose  be two fibers or fiber 

geodesics interesting at the point  with angle . If the 
point transformation given by equation (47a, b) maps any 

two anatomical shapes  of  manifold, such 

that  be two fibers on  intersecting 

at the point  with an angle  then the point 
transformation will be called a conformal transformation 
iff 
 

      (51)                                           
 

where  being some function. Moreover, if in place of 
the point transformation (Equation47a, b), we have a 

Gaussian mapping  from the brain cortical 

surface  to the unit sphere  which spatially 

transforms each point  of  to its normal . Then 
this map will conformally transform infinitesimal circles to 
infinitesimal circles and will preserve the intersecting 
angle among circles. The following Figures (8 and 9) 
illustrate how a conformal transformation spatially maps 
the brain cortical surfaces. 
 
 
CONCLUSION  
 
Here is the brief discussion over some crucial results 
obtained from our article written in favor of spatial 
transformation of DT-MRI: 
 
(1) In order to justify the results of Riemannian geometry 
in the study of DT-MRI, we have calculated the inverse 
diffusion tensor whose value is defined as 

. Also, with its help we have defined a 
metric between any two nearby water molecules diffused 
along any axon fiber given by Equation (20) and 
measured the length of that arbitrary axon fiber given by 
Equation (21). 
(2) As it has been verified that diffusion tensor manifolds 
are generally Riemannian symmetric and hence we have 
introduced a condition given by Equation (14) for 
Riemannian symmetry, from which we have deduced 
[Equation (16)] that the brain cortical manifold, that is,, 
the diffusion manifold is not merely a Riemannian 
symmetric but also a semi-symmetric manifold. Thereby, 
not only the results of Riemannian geometry can be 
made valid for DT-MRI studies, but the results of semi-
symmetric geometry can also be justified therein. 
(3) We  have  setup  a  relation given by Equation (23) for 
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               (a)                                  (b)  
 

Figure 8. (a) shows the brain cortical surface with its mass center 
positioned at the coordinate origin, the yz plane aligned to the hemisphere 
plane and the originating points of the central sulcus near hemisphere 
clefts defines the xy plane. (b) Shows the conformal mapping of the brain 
cortical surface to a unit sphere (Zou et al., 2006). 

 
 
 

 

 

 

 
 
 
 
 
 

 

 

      (a)             (b)             (c)              (d) (a) (c) (d) (b) 
 

 

Figure 9. (a) Shows the template brain cortical surface with hemisphere cleft, central 
sulky, etc. as the landmarks. (b) Shows the result of mapping the cortical surface of a 

subject, with the same anatomical landmark specified. (c) Onto the unit sphere by the 
normal conformal mapping. (d) Shows the cortical surface of a subject, with the same 
anatomical landmark specified. (e) Shows the result of the cortical surface registration 
for the subject at the spherical domain (Zou et al., 2006). 

 
 
 
the inclination of two axon fibers in terms of the angle 
between two hyper spheres which are orthogonal to the 
considered fibers. Also, the same (Equation 24) has been 
calculated in terms of the inclination of two tangent 
vectors drawn to any two water molecules of 
corresponding axon fibers at some specific instant. By 
comparing Equations (23) and (24), we have concluded 
that the isotropic behavior of diffusion tensor could not be 
directly introduced in case of Equation (24) as in this 
equation we cannot introduced an isotropic cone 
generated in Equation (23). The inclination is also 
calculated between two fiber tracts of brain white matter 
in terms of reciprocal diffusion tensor and its leading 
diagonal components. 
(4) Hopefully, the third conclusion of this article can 
express a bit mechanism for the brain injury. The MRI 
study of popular neural disorders, the “seizure disorders” 
mainly   involves  detection  of  malformations  of  cortical 

brain surface. Such malformations disturb the parallel 
orientations of axon fibers and fiber tracts and are a 
common cause of epilepsy. Thus by using third 
conclusion, one can geometrically detect the status of 
seizure disorder by simply calculating the angular 
disorders among fibers or fiber tracts. 
(5) We have discussed a comparison theory of two axon 
fibers by means of involute-evolute geometry. By this 
study, one is able to check out the geometric 
configuration of fibers in the brain white matter as if we 
establish a 1-1 correspondence between the diffused 
water molecules along considered axon fibers, then by 
having information about one of the fiber, the same 
information can be assessed for others. 
(6) The fiber geodesics for the axon fibers lying in the 
brain cortical manifold have also been calculated which 
can be used to identify the underlying manifold. Also, it is 
emphasized  that  by  making use of Equation (34), if one  
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calculates the least and greatest fiber geodesics 
depending upon the size of healthy brain, the calculated 
data can be used to find out the symptoms of 
neuropsychiatric disorders in unhealthy brains by means 
of comparative data studies.  Fiber geodesics given by 
Equation (43), in case of torsion full affine connection is 
also manipulated. 
(7) Finally, spatial transformations, like affine collineation, 
isometric collineation, projective motion and conformal 
transformation of DT-MRI by making use of geometry of 
Lie derivatives have been studied. The strong reason 
behind the use of Lie geometry for such a study is that 
whenever spatial transformations are applied to DT-MR 
images, they could be distorted or deformed (distortion or 
deformation of DT-MR images may depend upon the 
nature of spatial transformation applied to them) and 
hence in order to preserve the consistency and validity of 
DT-MRI data, it is mandatory to re-orient the transformed 
image and the Lie operator is the only operator which can 
bring back the transformed image to its original position. 
(8) The above spatial transformations, specially the 
conformal transformations could be used to examine the 
symptoms arise due to brain tumors, schizophrenia and 
other psychiatric disorders as in case of brain tumors the 
axon fiber tracts may got disruption (angular or parallel) 
or displacement and hence conformal transformation are 
able to map the orientation of anatomical shapes of brain 
both in terms of sense and magnitude. Also, the case of 
schizophrenia can be geometrically examined using the 
aforementioned spatial transformations, as in this disease 
the fiber tracts lose their orientation. 
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