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Equation of state of hot nuclear and neutron matter are calculated in the frame of the Thomas-Fermi 
approximation using of the effective nucleon - nucleon interaction of Myers and Swiatecki in the new 
approach. The effect of temperature on effective mass, pressure, entropy and binding energy is 
discussed. A critical temperature of 17.4 MeV for symmetric nuclear matter is found and there is no 
phase transition in the neutron matter systems. The results of calculations are in good agreement with 
experimental prediction and other theoretical results. 
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INTRODUCTION 
 
The properties of hot and dense nuclear matter play an 
essential role in the understanding of high-energy heavy 
ion collision (Bao-An-Li et al., 2001), supernova 
explosions, and proto neutron stars (Lattimer and 
Prakash, 2001; Steiner et al., 2005; Horowitz and 
Piekarewicz, 2001). For that reason the problem of hot 
nuclear matter has been studied over the past decades in 
several investigations. The many-body theory at finite 
temperature has been developed along different lines 
and methods, such as Lattimer and Ravenhall (1985) and 
Su et al. (1987), have used phenomenological models of 
nuclear matter, the Chiral Sigma model has been applied 
by Jena and Singh (2004); Sahu and Jha et al. (2004), 
relativistic mean-field models have been used by Jiang et 
al. (2007), green function approach has been applied by 
Gad and Hassaneen (2007), lowest-order constrained 
variational method (LOCV) has been used by Modarres 
and Moshfegh (2005, 2002), relativistic Bruckner-Hartree-
Fock theory at finite temperatures has been applied by 
Weber and Weigel (1988). So the results of our approach 
can be compared with those calculations. These models 
can be divided into two categories, namely: non-
relativistic and relativistic potential models. The majority 
of the relativistic treatments are performed in the 
framework   of   the   relativistic   Hartree    approximation 
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(Weber and Weigel, 1988; Huber et al., 1998) and the 
majority of the theoretical treatments utilize the non-
relativistic scheme, using either effective density 
dependent interactions or the Bruckner approach 
(Pethick et al., 1995; Das et al., 1992). 

The disadvantage of such a microscopic treatment is 
the numerical complexity of the method. For that reason it 
is very tempting to use simpler models which are easier 
to deal with, and make comparisons with respect to the 
properties of finite nuclei, the parameters of the mass 
formula, neutron stars. For this purpose we selected the 
new Thomas-Fermi approach of Myers and Swiatecki 
(Myers and Swiatecki, 1994). The paper is organized as 
follows: we present a brief formalism of the Thomas-
Fermi model for density and momentum dependent 

interactions. In this study we drive the EOS with zero and 

finite temperature for symmetric nuclear and neutron 
matter. The results of this model for binding energy, free 
energy and other thermodynamical properties of 
symmetric nuclear and neutron matter are given 
afterwards. Finally, the conclusions and summary are 
presented in the last section. 
 
 
THOMAS-FERMI MODEL 

 
Zero temperature 

 
We shall not go into details concerning this  model,  since  they  are 
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described in greater detail in numerous investigations prior to this 
one (Myers and Swiatecki, 1994; Strobel et al., 1999). We use the 
density and momentum dependent interaction of the following 
structure: 
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The quantities Fp,0ρ and 
FT  denote the baryon number density, 

Fermi momentum and the kinetic single-particle energy of 
symmetric nuclear matter at saturation, respectively and given by: 
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The potential’s radial dependence, f , is chosen to be Yukawa 

type, that is: 
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and ρ  is a mean density defined by: 
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Where 1ρ , 2ρ are the relevant neutron or proton densities at point 

1 and 2, respectively and fma 59542.0=  . 

 

The parameters ξ  and ζ in Equation 1 allow the interaction to be 

different for like (upper sign) and unlike (lower sign) pairs of 

particles. The choice ζξ ≠  leads to a better description of 

asymmetric nuclear systems. With the parameter α one adjusts 

mainly the binding properties of nuclear matter. The repulsion is 

described by the momentum dependent term
2

12pβ∝ . Since this 

repulsion turns out to be too strong for higher relative momenta, 

one corrects this deficit by the term
1

12

−
∝ pγ .  The term 

proportional to 3

2

0

)
2

(
ρ

ρ
σ takes care of a better agreement with the 

nuclear optical potential (Strobel et al., 1999). The energy per 
nucleon (with the respect isospin) in the Thomas-Fermi model is 
given by: 
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In the aforementioned equation )2(4=ν is used for nuclear 

(neutron) matter. The single-particle potential is defined by: 
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Here, uuuullll and σγβασγβα ,,,,,, are defined as: 

)1(5.0),1(5.0 ξαξα +=−= ul ; 

)1(5.0),1(5.0 ζβζβ +=−= ul ;

)1(5.0),1(5.0 ζλζγ +=−= ul ; 

)1(5.0),1(5.0 ζσζσ +=−= ul . 

 

Where 44003.0=ξ  and 59778.0=ζ  (Strobel et al., 

1999). 
 
Results of this model for cold matter are described in more detail in 
Myers and Swiatecki (1994) and agree rather well with the values of 
the semi empirical droplet mass formula. 
 
 
Finite temperature 

 
The calculation of the Thomas-Fermi model at finite temperature for 
symmetric nuclear matter follows exactly the calculation at zero 
temperature except that we use the Fermi-Dirac distribution 
function: 
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With

KT

1
=β , instead of the step function )( ppF −Θ  in the 

case of zero temperature (T stands for temperature and 1≡k  is 

the Boltzmann constant). In this equation, the single-particle 
energies are: 
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And ),( ρµ T  is the chemical potential at a given temperature and 

density for a non-interacting system. We introduce an effective 
mass in single particle energy and simply use (Moshfegh and 
Modarres 2005; Moshfegh and Modarres, 1998): 
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Where ),(* Tm ρ  is the effective mass and it is taken as a 

variational parameter, chemical potential will be obtained by 
choosing density as follows: 
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One then obtains for the energy per nucleon for the symmetric 
nuclear matter: 
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With the temperature dependent single-particle potential: 
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At finite temperature we must calculate the Helmholtz free energy 
per particle, that is: 
 

TsuF −=                                                                         (15) 

                                                                                                                                                                                    

And the entropy per S particle is written as (Fetter and Walecka, 
1971): 
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In other to calculate symmetric nuclear matter properties in this 
model at finite temperatures we performed in the following way. We 
calculated free energy per nucleon for a given temperature, density 

and different masses of 
*

m so that: 
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The mass for which F is minimized will be considered as the 
effective mass. For a given effective mass by calculation, it is very 
easy to calculate, the pressure, entropy, free energy, binding 
energy and other properties of the Thomas-Fermi equation of state. 
The calculated free energy at a given density, temperature and 
effective mass is used to obtain the isothermal 

pressure, ),,( *mTP ρ , by differentiating ),,( *mTF ρ , that is: 
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From the definition of specific heat per nucleon that is:   
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We can calculate vc . 

 
 
RESULTS AND DISCUSSION 
 
We presented a macroscopic calculation of symmetric 
nuclear and neutron matter in the frame of the Thomas-
Fermi approximation using a recent modern 
parameterization of the effective nucleon –nucleon 
interaction of Myers and Swiateski in the new approach. 
We compared our results with the EOS  in this model, 

obtained by Strobel et al. (1999). They have been the 
critical temperature for symmetric nuclear matter 
is MeVT

C
8.20= , but we have found a lower critical 

temperature. It turned out that, despite its simplicity, the 

modern TF  model shows the same features with respect 
to the EOS  of symmetric nuclear and neutron matter as 

complicated non-relativistic variational calculations. The 

symmetric nuclear and neutron matter properties for TF  
are in excellent agreement with the body of presently 
existing data (Figure 1). As we would expect, u is a 

rapidly increasing function of density beyond the nuclear 
matter saturation density, but it is satisfactorily small up 
to this density. From this figure, we observed that 

the EOS gets stiffer with increasing temperature. For 

small density one obtains as expected, the behavior of a 
free Fermi gas with a linear temperature dependence, 
since the nucleon-nucleon force has a small range 

(Strobel et al., 1997). For increasing density the EOS  

exhibits a quadratic temperature dependence. At zero 
temperature it has a minimum at the nuclear saturation 

density 0ρ  which corresponds to a binding energy per 

nucleon as resulted in Jena and Singh (2004) and Sahu 
et al. (2004). With the increase of temperature the 
minimum shifts toward higher densities and for higher 
temperatures the minimum of the curve becomes positive 
(Figure 1). From these graphs, we find that at constant 
density, the free energy decreases with the increase of 
density, the free energy shows an increasing trend for a 
given temperature (Figure 2). 

It is observed that entropy is non-zero even at 
vanishing baryon density at a temperature. At lower 
temperature s decreases slowly as compared to higher 

temperatures and the minimum value of s increases as 

the temperature increases which is similar to the results 
of Jena and Singh (2004), Sahu et al. (2004) and 
Randrup and Medeiros (1992) and agrees with the 
experimental situation of Jacak et al. (1983) and Li et al. 
(1994) (Figure 3). 

The figure shows that at zero temperature, the 
pressure first decreases, then increases and passes 
through 0=p  at 

0ρρ = (saturation density), where the 

binding energy per nucleon is a minimum. When the 
temperature increases, the region of mechanical 
instability   decreases   and   disappears  at   the    critical
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Figure 1. Energy per nucleon versus density for symmetric nuclear matter )0( =δ  at 

different temperatures. 
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Figure 2. Chemical potential as function of density for symmetric nuclear matter at 
different temperatures. 

 
 
 

temperature
C

T , which is determined by 

0
2

2

=
∂

∂
=

∂

∂

cc TT

pp

ρρ
. The critical point,  where  the  liquid 

phase and the gas phase merge, correspond to the 
maximum of the coexistence line in the density-pressure 
plane. The thermodynamic conditions for the coexistence 
of the two phases are: 
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Figure 3. Free energy per baryon versus density for symmetric nuclear matter. 

 
 
 

p (fm
-3

)  
 
Figure 4. The entropy as a function of density at different temperatures for 
symmetric nuclear matter. 
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The value of the critical temperature obtained from the 
Thomas-Fermi model in the new approach 

is MeVT
C

4.17= , which is in fair agreement with the 

results obtained in other studies. For temperature
cTT > , 

only the gas phase can exist. Due to the importance of 
the   liquid-gas   phase   transitions   the   transitions  are 

predicted with various models. The value for the critical 
temperature depends strongly on the choice of the forces 
(and approximations). This result can be compared with 

the experimental result MeV15.17 ± of Jacak et al. 

(1983) and MeV6.01.13 ± of Li et al. (1994), 

MeV2.17 and MeV14 of the theoretical prediction of 

Sahu et al. (2004) and (Zeng-Hua et al., 2004) 
respectively   (Figure  4).   It   is  observed    that    in    all
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Figure 5. The pressure of symmetric nuclear matter as function of baryon 
density at different temperatures. 
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Figure 6. The effective mass versus number density at different temperatures for 

symmetric nuclear matter. 

 
 
 
temperatures *

m decreases with the increase of ρ . Also 

it is clear from the figure that 
*

m increases gradually 

withT . There is an agreement between our results and 
those given in  Jena  and  Singh  (2004)  and  Sahu et  al. 

(2004) (Figure 5). 
From the simple Fermi-gas model we expect that the 

specific heat behaves linearly with respect to T at low 
temperatures and densities (Figure 6). 

The  results   of   calculation   for   neutron   matter   are
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Figure 7. The total specific heat at various densities versus temperature. 

 
 
 

 
 

Figure 8. The energy per nucleon versus density for neutron matter )1( =δ  at 

different temperatures. 

 
 
 

presented in Figures 7 to 11. 
 
 
SUMMARY AND CONCLUSION 
 
We have done calculations for cold and  hot  nuclear  and 

neutron matter at different temperatures using the 
nucleon-nucleon interaction of Myers and Swiatecki in the 
new approach with effective mass. We have presented 
variations of pressure, effective nucleon mass, entropy, 
free energy, chemical potential and energy per nucleon 
with respect to density for various temperatures. We  also 
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Figure 9. The chemical potential as function of density for neutron matter at 

different temperature. 
 
 
 

 
 
Figure 10. Free energy per baryon versus density for neutron matter at different 
temperatures. 

 
 
 

found that the model under investigation indicates a 
liquid-gas phase transition and the critical temperature is 
found to be MeVT c 4.17= . Almost all non-relativistic 

calculations   give   critical   temperatures   in   the  range 

of MeV2214 − . The results are in excellent agreement 

with the outcome of calculations performed for a broad 
collection of sophisticated non-relativistic as well as 
relativistic models for the equation of state. 
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Figure 11. Entropy per baryon versus density for neutron matter at different 
temperatures. 
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