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In this work, we applied density matrix renormalization group to one-dimensional Hubbard model at five 
numbers of sweep to solve strongly correlated interacting electrons system, starting from two electrons 
on two sites up to ten electrons on ten sites at half filling. The results that emerged from the present 
study is in agreement with that of exact diagonalization, variational and Lanczos solution at the varying 
values of the Coulomb interaction strength (U/t) at t=1. The total energy, Eg/t, of the ground state 
increases with the increase in interaction strength for all the numbers of site, N. The spectra intensity 
increases with increase in the interaction strength but decreases to zero when the interaction strength 
is made negatively large. This study is extended to more than two electrons on two sites. We equally 
show effect of interaction strength, U/t, at t = 1 on the energy-dependent entropy, S. 
 
Key words: Density matrix renormalization group, Hubbard model, sweep, exact diagonalization, variational, 
Lanczos, entropy. 

 
 
INTRODUCTION 
 
The Hubbard model (Hubbard, 1963) has been greatly 
considered to be the basic formalism for tackling 
electron-electron correlations in interacting many-body 
systems ever since the advent of high-Tc super-
conductors. This model captures the dominant 
competition between the delocalizing effects of the kinetic 
energy and the localizing effects of the electron-electron 
repulsion. In spite of the simple form of this model, it has 
provided meaningful insights into the many-body 
properties, like high-Tc superconductivity, metal-insulator 
transitions and magnetic states of solids. 

Strong interactions between the electrons in many 
materials of technological interest, lead to collective 
behavior. The study of these strongly correlated electrons 
systems has turned out to be the core area of research 
especially in condensed matter physics and display a 
broad range of vital phenomena (Alvarez et al., 2007). In 
this context, Hamiltonian models are used to simulate the 
relevant interactions of a given compound, and the 
relevant degrees of freedom. The dependence of these 
studies is on the use of tight-binding lattice models that 
consider  electron  localization,  where  states on one site 
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can be labeled by spin and orbital degrees of freedom. 

Examples of these models include the Hubbard model 
(Hubbard, 1963, 1964), the t-J model (Spalek, 1977, 
2007) and the spin 1/2 Heisenberg model, which can be 
considered the undoped limit of the t-J model. 

There are many different ways to simplify the 
calculations for strongly correlated systems and one such 
method is the DMRG, invented by White in 1992. The 
DMRG is a numerical variational technique to study 
quantum many-body Hamiltonians that could be 
classified as a diagonalization method. In the past 
decade, the DMRG algorithm invented by White (1992) 
has been proven strongly to be successful for calculating 
the ground state properties of model Hamiltonians for 
very large systems in one dimension. In recent years, it 
has been adopted to study coupled fermionic and spin 
chain. It was even introduced to organic ferromagnets 
(Liu et al., 2004) when it was reformulated to models 
defined in momentum space (Xiang, 1996). 

For one dimensional system, this method can truncate, 
with bounded errors and in a general and efficient way, 
the underlying Hilbert space to a constant size. The 
detailed explanation of this technique (DMRG) cannot be 
captured in this present research paper, and we will only 
provide a brief procedural description of the method. The 
original paper (White, 1992) along with many published 
reviews (Hallberg, 2006; Rodriguez-Laguna, 2002; 
Schollwöck, 2005) are highly recommended for physicists 
who are not familiar with the technique. 

The present paper and accompanying code can be 
used in different ways. Physicists will be able to 
immediately use the flexible input file to run the code for 
the Hubbard model with inhomogeneous couplings, 
Hubbard U values, and on-site potentials, as well as 
different symmetries, either on one-dimensional chains or 
on n-leg ladders. Readers with knowledge of DMRG and 
C++ will be able to understand the implementation of the 
algorithm. 

Other software projects, such as the ALPS project also 
implement the DMRG algorithm within their own 
frameworks. However, this paper emphasizes on the 
computational approach to study strongly correlated 
electron systems. 

In this paper, we studied the one-dimensional (1-D) 
Hubbard model starting with two electrons on two sites 
up to ten electrons on ten sites. We employed the DMRG 
method (White, 1992) with the implementation of ITensor 
code (written in C++ programming language) (ITENSOR 
library, http://itensor.org) in order to solve the ground 
state in such complicated systems as precisely as 
possible. Especially, we concentrate on half-filling cases, 
in which many theoretical treatments failed to predict. 

By applying DMRG to 1-D Hubbard model, using some 
intrinsic routines in ITENSOR DMRG, we present the 
ground state energy for N electrons on N sites with 2 ≤ N 
≤ 10. The maximum entropy with respect to interaction 
strength is also presented. 
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METHODOLOGY 
 
Model and parameters 
 

The single band Hubbard Hamiltonian is written as 
 

                            (1) 
 

where 〈i,j〉 denotes nearest-neighbour (NN) sites,    
      ) is the 

creation (annihilation) operator with spin σ = ↑ or ↓ at site i, and      
=    

     is the occupation number operator, and of course h.c is the 

Hermitian conjugate. The transfer integral tij is written as tij = t, 
meaning that all hopping processes have the same probability. The 
parameter, U is the on-site Coulomb interaction. It is very important 
to mention that in principle, the parameter, U is positive because it 
is a direct Coulomb integral.  

In this study, the system described by Equation 1 is one-
dimensional, has Periodic Boundary Conditions (PBC) and the 
number of electrons is equal to the lattice size L. The site index in 
Equation 1 takes values from 1 ≤ i ≤ L with indices 1 and L+i being 
equivalent. The full Hilbert space for our eight-site ring without 
applying any symmetry is (16C8) or 12870 states and for the ten-site 
problem is 184756 states. In order to understand the complex 
physics of the strongly correlated states, we also plotted the 
entanglement entropy, S, with respect to interaction strength, U/t, to 
reveal the cause of the spin and the charge with different 
distribution under different conditions along the chain. 
 
 

Density matrix renormalization group 
 

This aims to give a brief overview of the DMRG method, and to 
introduce some conventions and notation guiding the DMRG 
technique as given by Alvarez (2009). The block is defined to mean 
a finite set of sites. Let C denote the states of a single site. This set 
is model dependent. For the Hubbard model, it is given by: C = 
{e,↑,↓, (↑,↓)}, where e is a formal element that denotes an empty 
state. For the t-J model, it is given by C = {e, ↑, ↓}, and for the spin 
1/2 Heisenberg model by C = {↑,↓}. A real-space-based Hilbert 
space V on a block B and set C is a Hilbert space with basis BC. 
This will simply be denoted as V(B) and assumed that C is implicit 
and fixed. A real-space-based Hilbert space can also be thought of 
as the external product space of #B Hilbert spaces on a site, one 
for each site in block B. We will consider general Hamiltonians that 
act on Hilbert spaces V, as previously defined. 

The description of this DMRG technique procedure as given by 
Alvarez (2009) is as following: the initial system and initial 
environment are represented by block S and E respectively as 
shown in Figure 1. Let us consider two sets of blocks X and Y. The 
blocks will be added one at a time from X to S and from Y to E. It is 
of great importance to note that X and Y are sets of blocks whereas 
S and E are basically blocks. All sites in S, X, Y and E are 
numbered. We now start a loop for the DMRG “infinite” algorithm by 
setting step = 0 and VR (S) ≡ V(S) and VR (E) ≡ V(E). 

The system is grown by adding the sites in Xstep to it, and let S´ = 
S ∪ Xstep, that is, the step th block of X to S is added to form the 
block S´; likewise, let E´ = E ∪ Ystep. Let us form the following 
product Hilbert spaces: V(S´) = VR (S) ⊗ V(Xstep) and V(E´) = VR (E) 
⊗ V(Ystep) and their union V(S´) ⊗ V(E´) which is disjoint. 

By considering  ̂S´∪E´, the Hamiltonian operator, acting on V(S´) 

⊗ V(E´). We diagonalize  ̂S´∪E´ (using Lanczos technique) to obtain 
its lowest eigenvector: 
 

                                                (2) 

 = −𝑡    𝑖𝜎
+  𝑗𝜎 + ℎ.   

<𝑖 ,𝑗>𝜎

+  𝑈  𝑖↑

𝑖

 𝑖↓                       

|𝜓〉  =  𝜓𝑖 ,𝑗  |𝑖〉  ⊗  |𝑗〉,

𝑖𝜖𝑉 𝑆´ ,𝑗𝜖 𝑉(𝐸´)
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Table 1. Comparison of the ground state energies (Eg/t) for two electrons on two sites as a function of U/t (at t=1) from the DMRG 
calculations with the exact and variational solution. The comparison shows that the results of DMRG become are more accurate with the 
exact and variational solutions 
 

Interaction 
strength 
(U/t) 

Energy (Eg/t) 

Density Matrix Renormalisation 
Group (DMRG) 

(This work) 

Exact method 

(Enaibe, 2003) 

Modified Lanczos method 

(Osafile, 2013) 

Variational calculation 

(Enaibe, 2003) 

5.00 -0.7016 -0.7016 -0.7016 -0.7016 

4.00 -0.8284 -0.8284 -0.8284 -0.8284 

3.00 -1.0000 -1.0000 -1.0000 -1.0000 

2.00 -1.2361 -1.2361 -1.2361 -1.2361 

1.00 -1.5616 -1.5616 -1.5616 -1.5616 

0.00 -2.0000 -2.0000 -2.0000 -2.0000 

-1.00 -2.5616 -2.5616 -2.5616 -2.5616 

-2.00 -3.2361 -3.2361 -3.2361 -3.2361 

-3.00 -4.0000 -4.0000 -4.0000 -4.0000 

-4.00 -4.8284 -4.8284 -4.8284 -4.8284 

-5.00 -5.7016 -5.7016 -5.7016 -5.7016 

 
 
 
where {| 𝑖 〉} is a basis of V(S´) and {| j〉} is a basis of V(E´). 

The density matrices for system are now defined as: 
 

                                                        (3) 
 
in V(S´), and environment: 
 

                                                       (4) 
 
in V(E´). We then diagonalize  ̂S, and obtain its eigenvalues and 
eigenvectors, wS 

i,i´ in V(S´) ordered in decreasing eigenvalue order. 
We change basis for the operator HS´ (and other operators as 
necessary), as follows: 

 

                            (6) 
 
In the same way, we proceed for the environment, diagonalize  E to 
obtain ordered eigenvectors wE, and define (HE´new basis)i,i´ 

Let mS be a fixed number that corresponds to the number of 
states in V(S´) that we want to keep. Consider the first mS 
eigenvectors wS, and let us call the Hilbert space spanned by them, 
VR (S´), the DMRG-reduced Hilbert space on block S´. If mS ≥ 
#V(S´) then we keep all eigenvectors and there is effectively no 
truncation. We truncate the matrices (HS´new basis) (and other 
operators as necessary) such that they now act on this truncated 
Hilbert space, VR (S´). We proceed in the same manner for the 
environment. 

Now we increase step by 1, set S ← S´, VR(S) ← VR(S´), HS´ ← 
HS, similarly for the environment, and continue with the growth 
phase of the algorithm. 

The sites in the system and environment grow in number as 
more steps are performed in the case of infinite algorithm. 
Immediately after this infinite algorithm, a finite algorithm 
commences in such a way that the environment shrinks at the 
expense of the system, and the system increases at the expense of 
the environment. In the case of finite algorithm, the total  number  of 

sites remains constant allowing for a formulation of DMRG as a 
variational method on a basis of matrix product states. The 
advantage of the DMRG algorithm is that the truncation procedure 
described above keeps the error bounded and small (assuming mS 
= mE = m). At each DMRG step (Chiara et al., 2008), the truncation 

error ϵtr = ∑       , where λi are the eigenvalues of the truncated 
density matrix ρS in decreasing order. The parameter m should be 
chosen such that ϵtr remains small (Chiara et al., 2008), say ϵtr < 
10−6. For critical 1-D systems, ϵtr decays as a function of m with a 
power law, while for 1-D system away from criticality it decays 
exponentially. Other studies provide more detailed description of 
the error introduced by the DMRG truncation in other systems 
(Hallberg, 2006; Rodriguez-Laguna, 2002; Schollwöck, 2005). 

The basis is set up in terms of the occupation number basis 
using bits pattern available in most programming languages. In our 
DMRG calculations, we obtained the ground state of chains of 
length up to 10 sites with open boundary conditions. The hopping 
integral is set at t = 1 and all energies are measured in units of t. 
The number of states kept at each iteration of the DMRG 
calculation varies from site to site, however, five number of sweeps 
were maintained for all the sites for the calculation to converge. The 
ITENSOR program was used to run the calculation. Clearly, from 
the input file above, if t1 and V are set equal to zero, we recover the 
t-U model which is precisely the Hubbard Hamiltonian (Idiodi et al., 
2009). 

The program was also tested by comparing the calculated energy 
with the exact, Lanczos and variational solution for varying values 
of interaction strength (U/t). Since there is a spin degree of freedom 
for electrons, one would expect the precision to be much lower than 
that for the spinless case, for keeping the same number of states. 
However, the precision is still very high for our problem because of 
the energy gap at half filling in the alternating Hubbard model. 
Table 1 shows the accuracy of the DMRG method with other 
methods. 
 
 

RESULTS AND DISCUSSION 
 

We present and discuss the results of our calculations in 
this section. Table 1 shows the comparison of the ground 
state energies (Eg/t) for two electrons  on  two  sites  as  a  

( ̂𝑆 )𝑖, 𝑖´ =  𝜓
𝑖 ´,𝑗
∗  𝜓𝑖 ,𝑗

𝑗𝜖𝑉(𝐸´)

                                                        (3) 

( ̂𝐸 )𝑗, 𝑗´ =  𝜓𝑖 ,𝑗 ´
∗  𝜓𝑖 ,𝑗

𝑗𝜖𝑉(𝑆´)

                                                     (4) 

(H
S´new basis

)i,i´ = (w
S
 )

−1
 i,k (H

S´
)k ,k´ w

S
k´,i´       (5) 
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Figure 1. DMRG procedure and blocks labelling. To form the system, the blocks from vector of blocks X are added one at a time to 
block S while blocks from vector of blocks Y are added one at a time to E to form the environment. Blocks are vectors of integers. 
The numbers at the top of the figure, label all sites in a fixed and unique way (Alvarez 2009). 

 
 
 
functions of interaction strength U/t values ranging from 5 
to -5 (at t=1) of the DMRG calculations with the exact and 
variational solution (Enaibe, 2003) and modified Lanczos 
(Osafile et al., 2013). It was observed that as the 
negative values of interaction strength increases, the 
ground state energy reduces and vice versa in the case 
of increasing the positive values of interaction strength. It 
was also observed that at the interaction strength U/t = 0, 
the ground state energy is -2.00 which compared 
perfectly with the modified Lanczos, exact and variational 
solution. The comparison shows that the results of 
DMRG become more accurate with the exact and 
variational solutions. 

The ground state energy dispersion for four electrons 
on four sites of Figure 2(a) showing the graph of energy 
versus t for various values of U (U = 0, 1, 2), the hopping 
term was gradually increased from no hopping (t = 0) to 
maximum hopping (t = 1). It was observed that at any 
constant value of U, the ground state energy reduces as 
hopping parameter, t increases, but at no hopping (t = 0), 
the Eg equals zero at all constant values of U. Moreover, 
our results reveal that for non-interacting U =0, there are 
linear decrease in Eg as t increases for all the lattice sites. 
Figure 2(b) shows the plot of the ground state energy 
(Eg/t) versus interaction strength (U/t). The energy 
increases linearly initially with the interaction strength and 
saturates at around Eg/t = -0.25. The result of our 
calculation is similar to that of exact solution (Onaiwu and 
Okanigbuan, 2013) as shown in Figure 1(c). Similar 
results were obtained by Canio and Mario (1996) and 
Babalola et al. (2011) (Figure 1c). 

Figure 3 is the energy dispersion for eight electrons on 
eight sites. (a) is the energy versus t for various values of 
U (U = 0, 1, 2, 3), the hopping term was gradually 
increased from no hopping (t = 0) to maximum hopping (t 
= 1) and (b) is the plot of the ground state energy (Eg/t) 
versus interaction strength (U/t). The result of our 
calculation is similar with that of exact solution (Onaiwu 
and Okanigbuan, 2013) as shown in Figure 2(c). 

Figure 4 shows the plot of ground state energy/t versus  

U/t for ten electrons on ten sites. Figure 4(a) is Eg/t 
versus t for various values of U from U = 0, 1, 2 and 3; 
whereas Figure 4(b) is the variation of the Eg/t with U/t. 

Figure 5 shows the variation of Eg/t with respect to U/t 
for the indicated values of N. We observed generally that 
with U/t = 0, the corresponding value Eg/t = - N for N ≤ 2.  

Meanwhile, Figure 6 simply shows the variation of 
maximum entropy „S‟ obtained from the five sweeps of 
our calculations with respect to interaction strength „U/t‟ 
for the indicated values of N. We then observed a 
different formation that with U/t = 0, the entropy „S‟ values 
are not sequential as in the case of Eg/t versus U/t where 
at U/t = 0, the Eg/t decreases as N increases as shown in 
Figure 4. But in the case of maximum S versus U/t, it 
does not follow any regular pattern. At U/t = 0, S = 1.5157 
(highest value obtained) for N = 10, while the lowest is S 
= 0.8266 at N = 4. 
 

 
Conclusion 
 
The renormalization group is a powerful technique to 
determine low energy properties of one-dimension many-
body systems. We have successfully applied DMRG to 
one-dimensional Hubbard model for the number of 
electrons greater than or equal to two but less than or 
equal to ten and showed the plot of maximum entropy „S‟ 
versus interaction strength from two to ten sites (Figure 
6) and verified that the ground state energy (Eg/t) 
decreases as the interaction strength (U/t) increases. 
With low computational cost, this study has shown that 
the DMRG method is one of the most efficient and 
versatile algorithm to solve the problem related to 
strongly correlated electron systems. 

It has been shown clearly how versatile and effective 
the application of DMRG technique to one-dimensional 
Hubbard model is. The programme successfully tackles 
larger electrons at half filling. An effort to apply DMRG to 
two-dimensional Hubbard model has not been 
successful.  Our next study will center on applying DMRG  

loop for the DMRG “infinite” algorithm by setting step = 0 and VR (S) ≡ V(S) and VR (E) ≡ V(E). 

   0 1 2…      s s+1….s+x0+1             s+x, s+x+1…               s+x+y+e 

 
    S   X     Y   E 

              System          Environment 
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Figure 2. The plot of dispersion curve for four electrons on four sites (a) is the 
energy (Eg) versus hopping energy (t) at different values of Coulomb interaction 
(U) as shown in the legend (b) Variation of Eg/t with the on-site energy U/t (c) 
shows similar result obtained from exact solution by Onaiwu and Okanigbuan 
(2013). 

 

                                                      (a) 

 

                                                      (b)    

    

                                                     (c) 
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Figure 3.The ground state energy (Eg/t) versus U/t for eight electrons on eight sites. (a)  
is ground state energy (Eg/t) versus hopping term (t) for various values of U as shown 
in the legend (b) is the variation of the Eg/t with U/t with good agreement with exact 
solution by Onaiwu and Okanigbuan (2013). 

 
 
 

 

                                                                  (a) 

 
 

                                                               (b) 

 
 

 
 

                                                                (a) 

 
 

                                                              (b) 
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Figure 4. The ground state energy/t versus U/t for ten electrons on ten sites. (a) 
is Eg/t versus t for various values of U from U = 0, 1, 2 and 3 while (b) is the 
variation of the Eg/t with U/tr 

 
 
 

 
 

Figure 5. Plot of ground state energy (Eg/t) against interaction strength (U/t) for 
various values of number of electrons N. 

 
 
 

 
 

Figure 6. The effect of interaction strength, U/t, at t = 1 on the energy-
dependent entropy, S, showing a clear distinction between the attractive and 
repulsive Hubbard models. 

 
 

                                                                (a) 

 
 

                                                              (b) 

 
 



 
 
 
 
to larger lattice sizes (far more than ten lattices) at half 
filling and check for how accurate our calculation will be. 
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APPENDIX 

 
Supported file for the work 
 

 
 

Figure S1. The ITensor DMRG input file for single band Hubbard model 

 
 

Input 
{ 
N = 2 
Npart = 2 
 
t1 = 1 
t2 = 0 
U = 5 
V1 = 0 
nsweeps = 5 
Sweeps 
{ 
1  Maxm=50, Minm=10,   Cutoff=1.0E-12, Niter=2, Noise=1.0E-07 
2  Maxm=100, Minm=20, Cutoff=1.0E-12, Niter=2, Noise=1.0E-08 
3  Maxm=200, Minm=20, Cutoff=1.0E-12, Niter=2, Noise=1.0E-10 
4  Maxm=400, Minm=20, Cutoff=1.0E-12, Niter=2, Noise=0.0E+00 
5  Maxm=800, Minm=20, Cutoff=1.0E-12, Niter=2, Noise=0.0E+00 
} 
quiet = yes 
} 


