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In the present paper we have found the exact solution of the bound states of Klein–Gordon equation 
with pseudo harmonic potential plus the ring-shaped potential via Nikiforov–Uvarov method. We have 
supposed scalar and vector potentials are equal. By special selection the potential is reduced to 
pseudo harmonic and harmonic oscillator potentials. Finally, we found and plotted the ground state of 
energy as a function of the coefficients potential. 
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INTRODUCTION 
 
The exact solution of the Schrödinger equation and 
Klein–Gordon equation for central and non-central 
potentials has been of considerable interest in recent 
years (Aktas, 2009). The Klein–Gordon and Dirac 
equations are used to describe the particle dynamics in 
relativistic quantum mechanics (Gerry, 1986). The Klein–
Gordon equation has been used for the motion of a spin-
zero particles in large class of potentials (Sheng et al. 
2003). The spin-zero particles, like pions or kaons 
interact strongly with other particle and fields (Berkdemir, 
2007). In recent years, many authors have worked on 
solving the Klein–Gordon equation with physical 
potentials including Hulthen potential (Simsek and 
Egrifes, 2004; Ikhdair and Sever, 2007; Haouat and 
Chetouani, 2008) Posch-Teller potential, ring-shaped 
harmonic oscillator potential, etc (Ikhdair and Sever, 
2007; Xu et al., 2010). The ring-shaped potential consists 
of radial and angular dependent potentials and useful in 
studying ring-shaped molecules (Chen et al., 2004). In 
this work we proposed ring-shaped potential combination 
of harmonics potential plus a non-central angular part. Its 
potential is composed of the superposition between the 
harmonic oscillator potential and  negative second  power  
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function potentials, plus non-central potentials. We pro-
posed the potential in spherical coordinates as follows: 
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Where ,a b  and c  are real constants. We replaced the 

coulomb term of the Hartmann’s potential with inverse 
squared term plus the harmonics oscillator potential 
(Chen et al., 2004). This potential can be used in 
quantum chemistry and nuclear physics to describe the 
ring-shaped molecules like benzene and the interactions 
between the deformed pairs of the nuclei (Barnea et al., 
2001). For solving the exact solution of the Schrödinger 
equation with non-central potential the most popular 
approximation schemes are the shifted 1/N expansion 
(Ikhdair, 2006) perturbation theory, path integral solution 
(Mandel, 2000) and supersymmetric method (Khare and 
Bhaduri, 1994; Alhaidari, 2002 ) and numerical methods 
(Bano et al., 2011, Ibijola et al., 2008). In this work we 
first discuss the Klein–Gordon equation with central and 
non-central potentials. Then we solve exact solution of 
the radial and angular parts using NU method (Alhaidari, 
2006, 2004). We found the eigenvalue with this potential, 
and then we determined the eigenvalue as a function of 
coefficient potential. 
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The Klein–Gordon equation with non-central 
potentials in spherical coordinates  
 

The Klein–Gordon equation describing a particle with 

scalar potential ( , )u r q  and vector potential ( , )v r q  is 

given by (Alhaiduri et al., 2006, Simsek and Egrifes, 
2004): 
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We suppose the scalar potential is equal with vector 

potential ( , ) ( , )u r v rq q= . Considering the Equation 1 

(Oyewumi and Akoshile, 2010). In the spherical 
coordinates we have: 
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For the wave function ( , , )ry q j we make the following 

separation ansatz: 
 

( ), , ( ) ( )Φ( )r R r Hy q j q j=                                     (4) 

 

This leads to  
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Where  
 

( )M Ee¢= - -2 2
    ( )A M E a= +      

( )B M E b= +      ( )g g g¢= + 1                          (6) 

 

The angular part equation is the following form: 
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Where 2m separation constant, solution of the Equation 

(8) is as following: 
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Equation 5 and 7 are radial and the polar angle equations 
and we will solve then using Nikiforov-Uvarov method. 
 
 
EXACT SOLUTION OF THE RADIAL KLEIN–GORDON 
EQUATION VIA NU METHOD 
 

In Equation 5 by using the new variable ( ) ( )R r r u r
-= 1

 we 

have  
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Supposing the change of variable as   x r= 2
  we get    
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We have solved the Equation 11 by using Nikiforov–Uvarov 
method, (Nikiforov, 1998; Aktas, 2000). The energy eigenvalue of 
radial equation is obtained as following: 
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Finally By using the NU method, the redial wave function is as 
follow 
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2  are the generalized Laguerre polynomials. 

Therefore, we have found the eigenvalue and redial eigenfunction 
of Klein–Gordon equation. 
 
 

Solution of angular part Klein - Gordon equation  
 

After separating the Klein–Gordon equation, the polar angel part 
equation is as follow: 
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Using the change of variable cosx q=   we have: 
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By using Nikiforov-Uvarov method, (Nikiforov, 1998; Aktas, 2000), 
we have: 



 
 
 
 

 
 
Figure 1. Energy of the ground state of the pseudoharmonic 

potential for .a fm
-= 3

1 , . .fm b fm£ £1 15  and 

.M fm
-= 1

5 . 
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Wherec E M c¢ = +( ) , Substituting Equation 17 in Equation 

12, we find the final energy eigenvalue for angular part as follow: 
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Finally By using NU method, the angular part wave function is as 
follow: 
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Where the above equation from Rodriguez polynomials notation the 
Jacobi polynomials is as follow 
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Therefore, we derived the redial and angular part of the wave-
function and energy eigenvalues of the Klein–Gordon equation 
analytically. 
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RESULTS AND DISCUSSION  
 
Having various choices of potential parameters, our 
results can also be converted to the solution of some 
quantum mechanical systems. The results are as follows: 
  

)i  In Equation 1 when the potential coefficient c  is zero 

(c= 0), the potential reduced the pseudoharmonic 

potential. The standard form of this potential is as 
following: 
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Where 
e

D   is the dissociation energy between two atoms 

in a solid and 
e
r   is the equilibrium inter molecular 

separation, which can be simply rewritten in the form of 
an isotropic harmonic oscillator plus an inverse quadratic 
potential. By comparing Equation 1 with Equation 22 we 

have 
e e
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-= 2

, 
e e
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. Substituting these 

parameters in Equation 18, the ground state energy is as 
follow: 
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Figure 1 shows energy of the ground state for 

. .fm b fm£ £1 1 5  and .a fm
-= 3

1 . The ground state 

energy is a function of coefficient potentialb . 

According to the Figure 1, we can conclude that the 
ground state energy is the reverse of the coefficient 
potential. In this state, the other energy levels are given 
by 
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Where , , ,..n= 1 23 and m  depend onn . Also, M  is 

mass of particle. 

 
)ii  When the potential coefficients are c= 0, b= 0 

the potential converts to the harmonic potential and the 
ground state eigenvalue energy is as follow: 
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In Figure 2, we show that the energy  ground  state  as  a
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Figure 2. Energy of the ground state of the harmonic potential for 

. .fm a fm
- -£ £3 3

1 1 5   and  .M fm
-= 1

5 . 

 
 
 

  
 

Figure 3. Radial wavefunction and probability density for ,n l= =1 0 . 

 
 
 

function of the coefficient potential   

for. ( ) . ( )fm a fm
- -£ £3 3

1 1 5 . 

From Figure 2, we can conclude that the ground state 
energy has an increasing state. The other energy levels 
are given by 
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When the potential coefficients , ,a b c ¹ 0 the potential 

consist of central and ring-shaped potential and the 
eigenvalue energy is follow: 
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Figure 4. Radial wavefunction and probability density for ,n l= =2 0 . 

 

 
 

Where, , , , ,..n= 01 23 and m is depend onn  also M  is 

mass of particle. Thus, in this paper we found solved the 
Klein–Gordon equation analytically and exactly and found 
the energy levels of Klein–Gordon with pseudoharmonic 
potential plus ring-shaped potential. Then, in special 
physical condition, we analyzed these eigenvalues with 
the solved problems.  Finally, we have plotted some the 

first few radial wave functions ( )
n
R x  and the probability 

density, ( )
n
R x

2

  in Figures 3 and 4. This method of 

solving quantum mechanical problems may be useful in 
solving other complicated systems analytically. Given the 
above considerations, the authors believe that quantum 
chemistry and nuclear physics is field where the concepts 
and techniques and results can be put to good use. 
 
 

CONCLUSION 
 

We have studied the Klein–Gordon equation with special 
class of non-central potentials. Those potential can used 
to study the relativistic effect of the complex vibration-
rotation energy structure of multi-electron atom and multi-
atom molecules. Although we consider only the bound 
state problem here, this kind of soluble type of non-
central potentials may have applications in scattering 
problems. This method of solving quantum mechanical 
problems may be useful in solving other complicated 
systems analytically. 
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