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The rate of entropy generation during the steady conduction through a solid slab is investigated 
analytically. The effects of thermal conductivity and internal heat generation/sink on the total rate of 
entropy generation are discussed. Cases of uniform, spatial variable and temperature dependent 
thermal conductivity are considered. In addition, the case of introducing internal heat source/sink is 
discussed.  It is concluded that the total rate of entropy generation per heat transfer rate in steady heat 
conduction through solid material is a function of only the rate of heat transfer, regardless of the 
distribution and or dependence of the thermal conductivity. The total rate of entropy generation during 
conduction in solid material can be eliminated by introducing internal heat generation/sink. The total 
rate of entropy generation during the transient heat conduction decreases with time and approaches its 
minimum value as the steady conduction is reached.  
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INTRODUCTION 
 
Method of the entropy generation minimization has been 
an important tool for optimization thermal systems to 
improve the performance of such systems (Bejan, 1979, 
1996). Accordingly, the possibility of minimizing entropy 
generation in thermal conduction systems has been the 
subject of some recent investigations. Kolenda et al. 
(2004) studied entropy generation in steady-state heat 
conduction process. They stated that minimization of 
entropy generation in heat conduction process is always 
possible by introducing additional heat sources. However, 
when additional heat sources are added the entropy 
generation calculation should also take into account the 
additional term for the entropy generation due to the heat 
sources added. Ibanez et al. (2003) analyzed the 
minimization of the entropy generation of a solid slab with 
steady-state internal heating where the solid slab external 
surfaces are exposed to convective ambient with different 
Biot numbers (Bi). They found that by controlling the Bi in 
one of the surfaces, an optimum Bi for the second 
surface that minimizes the global entropy generation rate 
can be found. On the other hand, Bertola and Cafaro 
(2008)  discussed   the   principle   of   minimum   entropy 

production theorem and its application to heat and fluid 
flow. They showed that the minimum entropy production 
of system in a stationary state cannot be different from 
zero. 

Entropy generation in transient heat conduction has 
also been studied. A second law analysis for hyperbolic 
heat conduction in a slab is carried out by Barletta and 
Zanchini (1997). Bautista et al. (2005a) studied entropy 
generation during transient heat conduction in a solid 
slab. They found that the spatial average entropy genera-
tion rate per unit volume is always a decreasing function 
with time. In another paper, Bautista et al. (2005b) 
studied the unsteady entropy generation rate due to an 
instantaneous internal heat generation in a solid slab. 
They showed that the entropy generation rate presents a 
very sensible dependence on heat conduction, heat con-
vection and internal heat generation. Strub et al. (2005) 
investigated the periodic heat conduction through a wall 
using second law analysis. The two approaches that they 
developed lead to different, sometime opposite results; 
therefore, their study raises the question: which funda-
mental relations can exist between irreversibility  and  the 
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Figure 1.  Heat conduction in a solid wall with fixed 

surface temperatures. 

 
 
 
between irreversibility and the consumed energy?  

Bisio (1990) studied the rate of entropy production in 
one-dimensional heat conduction considering tempera-
ture dependent thermal conductivity. Nuwayhid et al. 
(2000) studied the entropy generation in the thermoelec-
tric generator. They found that the entropy generation 
minimization method is less straight forward than the po-
wer maximization technique requiring careful accounting 
of the different sources of irreversibility. Nuwayhid and 
Moukalled (2003) studied the entropy generation rate and 
power production in a power producing system taken as 
a temperature gap between two thermal reservoirs such 
as thermoelectric generator. They showed that there 
exists a possibility to enhance thermoelectric perfor-
mance by tailoring the temperature profile. However they 
made no attempt to suggest practical means of achieving 
their results. 

Ghodoossi (2004) performed a second law analysis for 
the optimal uniform heat generating areas with different 
complexity levels of the tree network of heat conducting 
paths. He showed that the heat flow performance does 
not improve if the internal complexity of the heat gene-
rating area increases. Khaled (2008) studied analytically 
the effect of both the periodic heat flux and convective 
boundary condition on heat conduction and entropy 
transfer through semi-infinite and finite media. He found 
that the amplitude of the steady periodic noise in heat 
and entropy transfer decreases as Bi increases. He also 
found that the rate of entropy transfer to both media 
reaches maximum values at critical times lower than the 
time   needed   for  both  the  applied heat  flux.  Recently 

Esfahani and Koohi-Fayegh (2009) studied entropy 
generation in one-dimensional semi-infinite conduction 
with constant surface temperature boundary condition. 
From the above cited literature, it is clear that there is no 
conclusive explanation for the existence of the minimum 
entropy generation in heat conduction systems. In the 
present work, the question for the possibility of minimi-
zing the entropy generation rate for steady-state, heat 
conduction process is considered. The effect of the 
thermal conductivity variation as well as the internal heat 
generation on the entropy generation rate is studied.  
 
 
ANALYSES 
 
Consider the slab of thickness L with fixed surface 
temperatures, T1 and T2 respectively, as shown in Figure 
1. The local entropy generation rate in the slab as a result 
of heat conduction depends on the temperature distribu-
tion in the slab. On the other hand, the temperature 
distribution in the slab depends on the thermal 
conductivity variation and the volumetric heat generation, 
if exists. In the absence of volumetric heat generation 
and for uniform thermal conductivity the temperature 
distribution in the slab is linear and therefore the entropy 
generation is positive non zero and depends on the 
constant temperature gradient. This entropy generation 
that corresponds to the linear temperature variation may 
not be necessarily the minimum. Search of the possible 
existence of another temperature variation which minimi-
zes the entropy generation rate is the subject of  the  current  
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subject of the current investigation. In the following, the 
analysis is carried out case by case and discussion is 
given. 
 
 
Case 1: Uniform thermal conductivity and no internal 
heat generation 
 
The differential equation governing the one-dimensional 
heat conduction with no internal heat generation is given 
by; 
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As a first step let us assume the thermal conductivity is 
constant and uniform. For constant thermal conductivity 
Equation (1) is reduced to; 
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The local entropy generation in the slab is given by; 
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The total entropy generation in the slab is obtained by 
integrating Equation (3) along the thickness of the slab. 
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The optimum temperature variation that minimizes the 
total entropy generation satisfies the Euler equation. 
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 where  and Tx denotes . Carrying out 

the algebra in Equation (5) the required temperature 
distribution is found to satisfy the differential equation. 
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 However, it is clear that the solution for the optimum 
temperature  variation  obtained from  Equation (6)   does  

 
 
 
 
not satisfy the heat conduction equation, Equation (2). In 
order to satisfy the heat conduction equation the first term 
in Equation (6) should vanish and thus the solution for the 
optimum temperature variation is obtained from the 
second term in Equation (6). Thus, the optimum tempera-
ture variation that satisfies both the heat conduction and 
the Euler equation becomes; 
 

const.T                                                                (7) 

 
which is a trivial solution which can occur only when 
T1=T2. Clearly both the rate of heat transfer and the 
entropy generation rate for this temperature distribution 
are zero.  
 
 
Case 2: Uniform thermal conductivity and internal 
heat generation/sink 
 
For a more meaningful solution for non-equal surface 
temperatures, Equation (6) may be compared with 
thermal conduction equation with internal heat 
generation. 
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where the internal heat generation (sink) is in the form of; 
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 In this case the entropy generation rate becomes; 
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that means, it is possible to eliminate the entropy 
generation rate by introducing a heat sink given by 
equation (9). The temperature variation in this case is the 
solution of equation (6) that satisfies the boundary 
conditions and can be shown as; 
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The temperature variation given in Equation (12) satisfies 
the heat  conduction  equation  and  yields  zero   entropy  



 
 
 
 
 
 
generation rate. The heat sink required to maintain this 
temperature variation is obtained by substituting Equation 
(12) into Equation (9) and is 
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 The total heat sink is obtained by integration Equation 
(13) along the thickness of the slab as 
 

1

12

1

21

0

ln)(
T

TT

T

T

L

kT
dxxqQ

L

s
                  (14) 

 
On the other hand the net heat input to the slab through 
both the surfaces of the slab is, 
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So, from Equations (14) and (15),   and the 

conservation of energy is satisfied.  
In conclusion, entropy generation minimization (elimina-

tion) is possible only when an internal heat sink variation 
in the form given by Equation (9) is introduced. However, 
the practical application of this internal heat sink is 
questionable.  
 
 
Case 3: Temperature dependent thermal 
conductivity, no internal heat generation 
 
Thermal conductivity is a temperature dependent 
property for most materials. Thus, we consider a possible 
temperature relation of the thermal conductivity k(T) for 
optimum entropy generation in this case. The thermal 
conduction equation is 
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The local volumetric entropy generation rate is 
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The total entropy generation in the slab is obtained by 
integrating Equation (18) along the thickness of the slab 
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 For optimum temperature distribution in the slab the 
Euler equation must be satisfied 
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 where . Performing the algebraic 

procedures this yields 
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 The first two terms must vanish in order to satisfy the 
heat conduction equation, equa£tion (17), thus, the 
necessary condition for the optimum solution is obtained 
to be  
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The solution of Equation (23) suggests that the thermal 
conductivity dependence to the temperature should be in 
the form; 
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C
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where C is a constant. The constant C can be evaluated 
if the thermal conductivity of the material at ambient 
temperature T=To is known as k ko, that is, C=koTo

2
.  

When the thermal conductivity is in the form given by 
Equation (24) the temperature distribution can be 
determined by solving the heat conduction equation, 
Equation (16). The solution of Equation (16) that satisfies 
the boundary conditions becomes; 
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The entropy generation rate can be evaluated by 
substituting Equations (24) and (25) into Equation (18). It 
can be shown that the entropy generation rate in this 
case is obtained to be uniform and is  
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 The local heat transfer rate, on the other hand, is 
evaluated to be; 
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Case 4: Variable thermal conductivity, no internal 
heat generation 
 
The solution for the optimum thermal conductivity in the 
previous case can be combined with the temperature 
profile to obtain the variation of the thermal conductivity 
along the thickness of the slab. Thus substituting 
Equation (25) into Equation (24) the variation of the 
thermal conductivity k(x) is obtained as 
 

2

121

212
00

1
)(

TL

x

TT

TT
Tkxk                                  (28) 

 

Equation (28) indicates a quadratic variation of thermal 
conductivity along the thickness of the slab that yields a 
steady-state temperature distribution in the form given in 
Equation (25). The resultant entropy generation rate and 
heat transfer rate are given in Equations (26) and (27), 
respectively.  

In order to find out the advantage of arranging the 
thermal conductivity in the form given in Equation (28) for 
the reduction on the rate of entropy generation in the 
slab, let us compare the rates of entropy generation for 
both the uniform and variable thermal conductivity 
models for the same amount of heat transfer rate.  

When the thermal conductivity is uniform the 
temperature distribution in the slab is linear and the rate 
of heat transfer is given by; 
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Comparing Equation (29) with Equation (27), equal rate 
of heat transfer requirement is satisfied for:  
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On the other hand, substituting Equation (30) into 
Equation (26) the rate of local entropy generation is found 
to be 
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Integrating Equation (31) along the thickness of the slab, 
the total entropy generation in the slab is found to be  
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which is exactly equal to the total entropy generation for 
the case of uniform thermal conductivity distribution. 
Thus, the total entropy generation per unit heat transfer in 
steady state conduction process is independent from the 
temperature distribution and/or the variation of thermal 
conductivity in the solid material. In fact, regardless of the 
volumetric variation within the solid material, the total 
entropy generation rate can be calculated by considering 
the entropy balance on the thermodynamic system that 
includes the solid slab shown in Figure 1. 
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The total rate of entropy generation during the transient 
heat conduction process could be much higher than that 
given in Equation (33). As the heat conduction 
approaches the steady-state condition the rate of entropy 
generation decreases and approaches its minimum value 
given by Equation (33) asymptotically. Therefore, the 
total rate of entropy generation in steady heat conduction 
process is always the minimum when compared with that 
in the transient part of the heat conduction process. This 
depends on the total rate of heat transfer through the 
solid material for fixed surface temperatures with no 
internal heat generation and is independent from the 
variation of the thermal conductivity of the solid material 
and the resultant temperature variation in it.  
 
 
Conclusions 
 
Rate of entropy generation during steady one-
dimensional conduction heat transfer through solid slab 
material has been considered. Possible ways of minimi-
zing the entropy generation rate  have  been  explored  case  



 
 
 
 
 
 
by case. The following conclusions can be derived from 
the present work: 
 
1. In steady conduction heat transfer through solid 
material minimization of entropy generation rate is only 
possible when the temperature distribution is uniform. 
However, in this case the heat transfer is zero.  
2. Minimization of the total rate of entropy generation in 
conduction is possible by introducing a distributed local 
rate of heat sink given by Equation (13). However, the 
practical application of this heat sink may be difficult in 
general.  
3. The other possibility of minimizing the total rate of 
entropy generation is through the use of temperature 
dependent thermal conductivity given by Equation (24). 
However, the practical application of this case is also 
limited.  
4. On the other hand, arranging the spatial variation of 
the thermal conductivity as given in Equation (28) the to-
tal rate of entropy generation can be minimized to that for 
the case of temperature dependent thermal conductivity.  
5. However, considering the total rate of entropy gene-
ration per unit rate of heat transfer through the solid slab, 
it is concluded that neither the dependence of the thermal 
conductivity on the temperature nor the spatial variation 
of it do not have any influence on the total rate of entropy 
generation.  
6. The total rate of entropy generation per unit rate of 
heat transfer in conducting heat is only related to the heat 
transfer rate through the solid material, regardless of the 
temperature and or thermal conductivity distribution in the 
solid material. Therefore, the total rate of entropy 
generation during transient conduction process always 
decreases and approaches its minimum as the process 
approaches the steady-state.  
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NOMENCTLATURE 
 
k: Thermal conductivity, W/m K 
L: Thickness of slab, m 
q: Internal heat generation rate, W/m

3
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s’’’: Local entropy generation rate, W/m

3
K 

T: Temperature, K 
x: Coordinate axis, m 
σ: Total entropy generation rate, W/K 
i: Input 
o: Reference value 
s: Sink 
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